course Mth163 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: `aSTUDENT RESPONSE: my example was (4^2)(5^3) did not equal 20^6 INSTRUCTOR COMMENT ** more generally a^n * b^n = a^(n+m), which usually does not equal (ab) ^ (n * m) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhy is the follow erroneous: a^(-n) = - a^n YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: this is wrong if you have say 4 ^-5, to get rid of the neg. exponent you would have to make it a fraction like so: 1 / 4^5 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSTUDENT RESPONSE: 2^-3 is not equal to -2^3 INSTRUCTOR COMMENT: ** A more general counterexample: a^(-n) = 1 / a^n is positive when a is positive whereas -a^n is negative when a is positive ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhy is the following erroneous: a^n + a^m = a^(n+m) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If we say 3^4 + 3^6 = 3^(4=6) = 3 ^10, we would get 59,049: but if we check it to the way the original problem was written 3^4 + 3^6 = 81 + 729 = 810 by far not the same answer, because you are adding the products you must work you problem and exponential functions out thy way it, is written. Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSTUDENT RESPONSE: (5^3)+(5^4) is not equal to 5^7 INSTRUCTOR COMMENT: (5^3) * (5^4) = (5^7) since (5*5*5) * (5*5*5*5) = 5*5*5*5*5*5*5 = 5^7. However (5^3) + (5^7) = 5*5*5 + 5*5*5*5*5 = 5*5*5( 1 + 5*5) = 5^3( 1 + 5^2), not 5^7.** YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ???? Why do you write it out as 5*5*5(1+5*5) = 5^3(1+5^2) and how did you get that from the original problem????
.............................................
Given Solution: `aSTUDENT RESPONSE: Why is the following erroneous: a^0 = 0 4^0 is not equal to 0 INSTRUCTOR COMMENT: ** a^(-n) * a^n = 0 but neither a^(-n) nor a^n need equal zero ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok, I didnt have the problem but I do understand the rule that any factor to the power of 0 is equal to one. Self-critique rating: ********************************************* Question: `q Why is the following erroneous: a^n * a^m = a^(n*m). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This is wrong because any same factor multiplied together with exponents is the same as that factor to the exponents added together for example: if we have 5^2 * 5 ^4 = 5^(2*4) = 5^8 = 390,625 this would not be the same as (5*5) * (5*5*5*5) = 25 * 625 = 15,625; which is the same as 5^2 * 5^4 = 5^(2+4) =5^6 = 15625 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSTUDENT RESPONSE: (4^7)(4^2) is not equal to 4^14 INSTRUCTOR COMMENT: Right. Generally a^n * a^m = a^(n+m), not a^(n*m). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 2. Graph and describe Give basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = 1200 (2^(.12 t) ) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: using t = 0, 1, 2, 3 to find y and make a graph; I have coordinates(0,1200),(1,1304),(2,1417),(3,1540) the two basic points are: (0,1200) and (1,1304) the basic ratio of these y values is 1304 / 1200 = 1.09 approx Confidence rating: unsure ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSTUDENT RESPONSE (0,1200),(1,1304) negative x-axis ratio=163/150 INSTRUCTOR COMMENT: the precise ratio is 2^.12, which is probably pretty close to 163/150 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok, I understand after some calculation that you reduced 1304/1200 by 8 to get 163/150 which is still 1.09 approx. Thank-you for your help on my question form. ???? Does it matter which form you write this ratio in?
.............................................
Given Solution: `aSTUDENT RESPONSE (0,400),(1,428) Neg. x-axis 1.07 or 107/100 is ratio INSTRUCTOR COMMENT: that ratio is correct and is of course equal to 1.07 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qgive basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = 250 ( 1 - .12 ) ^ t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: using t = 0, 1, 2, 3: I get (0,250), (1,220), (2,194), (3,170) The basic points being, (0,250) and (1,220) the ratio of the y values is: 220 / 250 = .88 Confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSTUDENT RESPONSE The basic points are (0,250),(1,220) The positive x-axis is the horizontal asymptote The ratio of y values at the basic points is 220 / 250 = .88. INSTRUCTOR COMMENT: Note also that the ratio .88 is equal to 1-.12; .88 is the growth factor and .12 is the growth rate. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok note that growth factor is 1 - .12 and the growth rate is .12 Self-critique rating: ********************************************* Question: `qgive basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = .04 ( .8 ) ^ t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: using t = 0, 1, 2, 3: giving you (0, .04), (1,,032), (2,.0256), (3,.02048) The basic points being: (0,.04) and (1,.032) The ratio being: .032 / .04 = .8 Confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSTUDENT RESPONSE (0,.04),(1,.032) are the basic points and the asymptote is the positive x-axis. The ratio is .32 / .4 = .8. The pattern is that the ratio is equal to b, where b is the base for the form y = A b ^ x. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok, the graph is a positive asymptote towards the x axis because it gets closer and closer to the x axis on the positive side. *remember ratio is equal to b, and b is the base form for y = A b^x* Self-critique rating: ********************************************* Question: `q problem 3. y = f(x) = 5 (1.27^x). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `qWhat is the ratio between the y values at x = 0 and at x = 1? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: in y = f(x) = 5(1.27^x) if x = 0 and 1, solve for y y = 5(1.2^0) ..5, giving you (0,5) y = 5(1.2^1) .6, giving you (1,6.35) the ratios between y at x = 0 and 1 is: 6.35 / 5 = 1.27 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** f(1) / f(0) = 5 * 1.27^1 / ( 5 * 1.27^0) = 1.27 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhat is the ratio between the y values at to x = 3.4 and x = 4.4? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: in y = f(x) = 5(1.27^x) .x = 3.4 and 4.4 The y ratio is [5(1.27^4.4)] / [5(1.27^3.4)] ..1.27 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** f(4.4) / f(3.4) = 5 * 1.27^4.4 / ( 5 * 1.27 ^3.4) = 1.27. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qVerify that the ratio of y values is again the same for your own points where x differs by 1 unit. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For my points of x = 2 and 3 with y = 8.0645 and 10.24195: I have a y ratio 10.24195 / 8.0645 = 1.27 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** STUDENT RESPONSE: My points were 4.5 and 5.5, and the y ratio was again 1.27 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhat is the ratio of y values when x values are separated by two units? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To find the ratio of the y values, you need to find the difference between the two ys. the x values would be: y = f(x) and y1 = f(x1) + 2 The ratio would be y1/ y = (x1 +2) / x Now plugging that into your ratio factor of 1.27^x you would have: 1.27^(x+2) / 1.27^x .The laws of exponents says you would subtract the exponents: 1.27^(x + 2 x) = 1.27^2 = 1.61 approx. Confidence rating: mostly ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** If x values are separated by 2 units then the ratio is 1.27^(x+2) / 1.27^x = 1.27^(x+2 - x) = 1.27^2 = 1.61 approx. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `q problem 4. Ratio of y values at x = x1 and x = x1+1 What does your result tell you about how the ratio depends on the x value x1? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: if y = 1.27 ^x then y1 = 1.27 ^x1: to find the ratio between x = x1 and x = x1+1 you would have to take 1.27^(x1 + 1) / 1.27^x1 .1.27^(x1 +1- x1) .1.27 ^ 1 = 1.27 This tells us like y = A b^x that the ratio where your answer is b; that your x values has nothing to do with the ratios. Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** If y = A b^x then the value at x1 is A b^x1 and the value at x1 + 1 is A b ^(x1 + 1). The ratio of these values is A b^(x1+1) / A b^x1 = b^(x1 + 1 - x1) = b^1 = b. The ratio should have been b, where b is the base in the form y = A b^x. This is the same as in all previous examples, which shows that there is no dependence on x1. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 5. y = 3 (2 ^ (.3 x) ). What is the ratio of the two basic-point y values? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x = 0 and 1 giving you the basic points of (0,3) and (1,3.69) the y ratio would be: 3(2^(.3*1)) / 3(2^(.3*0)) 1.23 approx. Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The basic points are the x = 0 and x = 1 points. The corresponding y values are 3(2^.(3*0) ) = 3 and 3(2^(.3 *1) ) = 3 * 2^.3 = 3.69 approx. The ratio of these values is 3.69 / 3 = 1.23. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhat is the y = A b^x form of this function? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If I take 3(2^(.3x) and put it in the form of y = A b^x: I would get y = 3(1.23^x) A = 3 and b = 1.23 Confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** 3 (2 ^ (.3 x) ) = 3 (2^.3)x = 3 * 1.23^x, approx. This is in the form y = A b^x for A = 3 and b = 1.23. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhat does the value of 2 ^ .3 have to do with this situation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: in the form y = A b^x .. 2^.3 is the value of b Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** CORRECT STUDENT RESPONSE: this is the b value in the form y = A b^x. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 6 P(n+1) = (1+r) P(n), with r = .1 and P(0) = $1000. What are P(1), P(2), ..., P(5)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: In P(n + 1) = (1 + r)P(n) r = .1 and P(0) = $1000 solve P(1), P(2), P(3) We have to solve for 0 first P(0 + 1) = (1 + .1)* P(0) .P(1) = 1.1 * 1000 .P(1) = $1100 P(1 + 1) = (1 + .1) * P(1) ..P(2) = 1.1 * 1100 P(2) = $1210 P(2 +1) = (1+.1) * P(2) P(3) = 1.1 * 1210 .P(3) = $1331 P(3+1) = (1+.1) * P(3) P(4) = 1.1 * 1331 ..P(4) = $1464.1 P(4+1) = (1+.1) * P(4) P(5) = 1.1 * 1464.1 ..P(5) = 1610.51 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** If n = 0 we get P(0 + 1) = (1 + .1) * P(0), or P(1) = 1.1 * P(0). Since P(0) = $1000 we have P(1) = 1.1 * $1000 = $1100. If n = 1 we get P(1 + 1) = (1 + .1) * P(1), or P(2) = 1.1 * P(1). Since P(1) = $1000 we have P(2) = 1.1 * $1100 = $1210. If n = 2 we get P(2 + 1) = (1 + .1) * P(2), or P(3) = 1.1 * P(2). Since P(2) = $1000 we have P(3) = 1.1 * $1210 = $1331. If n = 3 we get P(3 + 1) = (1 + .1) * P(3), or P(4) = 1.1 * P(3). Since P(3) = $1000 we have P(4) = 1.1 * $1331 = $1464/1. If n = 4 we get P(4 + 1) = (1 + .1) * P(4), or P(5) = 1.1 * P(4). Since P(4) = $1000 we have P(5) = 1.1 * $1464.1 = $1610.51. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 8. Q(n+1) = .85 Q(n), Q(0) = 400. What are Q(n) for n = 1, 2, 3 and 4 / YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: In Q(n +1) = .85 Q(n) .Q(0) = 400 Q(0 +1) = .85 * Q(0) ..Q(1) = .85 * 400 .Q(1) = 340 Q(1+1) = .85 * Q(1) .Q(2) = .85 * 340 .Q(2) = 289 Q(2+1) = .85 * Q(2) ..Q(3) = .85 * 289 ..Q(3) = 245.65 Q(3+1) = .85 * Q(3) .Q(4) = .85 * 245.65 .Q(4) = 208.8025 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** For n = 0 we have Q(0 + 1) = .85 Q(0) so Q(1) = .85 * 400 = 340. For n = 1 we have Q(1 + 1) = .85 Q(1) so Q(2) = .85 * 340 = 289. For n = 2 we have Q(2 + 1) = .85 Q(2) so Q(3) = .85 * 400 = 245.65. For n = 3 we have Q(3 + 1) = .85 Q(3) so Q(4) = .85 * 400 = 208.803. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhat is the growth rate for this equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: the growth rate is ..85 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The growth factor is .85, which is 1 + growth rate. It follows that the growth rate is .85 - 1 = .15 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok so the growth factor is .85, which is 1 + growth rate, so to find this growth rate we would have to take .85 1 = -.15 because if you added the .15 to 1 to get your growth factor you would actually have 1.15 that is why it has to be -.15. Self-critique rating: ********************************************* Question: `qproblem 9. interest rate 12%, initial principle $2000. What is your difference equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Your difference equation would be: P(n + 1) = (1+r) P(n) r = .12 and P(0) = $2000 Confidence rating: mostly ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The growth rate is 12% = .12 The growth factor is therefore 1 + .12 and the difference equation is P(n+1)=(1+.12)P(n), P(0)=2000. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qHow did you use your difference equation to find the principle after 1, 2, 3 and 4 years and what did you get? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Taking P(n+1) = (1+.12) P(n) n = 1, 2, 3, 4 ..P(0) = 2000 P(0+1) = (1+.12)* P(0) P(1) = 1.12 * 2000 .P(1) = $2240 P(1+1) = (1+.12)P(1) .P(2) = 1.12 * 2240 P(2) = $2508.8 P(2+1) = (1+.12)P(2) P(3) = 1.12 * 2508.8 .P(3) = 2809.856 P(3+1) = (1+.12)P(3) .P(4) = 1.12 * 2809.856 .P(4) = 3147.13872 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** STUDENT RESPONSE P(0+1)=(1+.12)2000 and so on up to P(4) was found. P1=2240 P2=2508.8 P3=2809.856 P4=3147.03872 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 11. Texcess(t) = 50 (.97 ^ t). What is your estimate of the time required to fall to 1/8 of the original value? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You have to find the original value first by saying t = 0: 50(.97^0) = 50 In order to find the fall of 1/8 of that value, you must take 1/8 * 50 = 6.25 to find the time required to fall 6.25 you would have an equation like this: 50(.97^t) = 6.25 to solve for t you would have to divide both sides by 50: .97^t = 6.25 / 50 . .97^t = .125; now we have to find the time that works: .97^40 = .296 approx. .97^ 60 = .161 approx. .97 ^ 65 = .138 approx. .97^ 68 =- .126 approx .97^68.2 = .125 approx or .97^68.3 = .125 approx t = between 68.2 and 68.3 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The original value takes place at t = 0 and is Texcess(0) = 50 * .97^0 = 50. 1/8 of the original value is therefore 1/8 * 50 = 6.25. You have to find t such that 50 * .97^t = 6.25. Dividing both sides by 50 you get .97^t = 6.25 / 50 or .97^t = .125. Use trial and error to find t: Try t = 10: .97^10 = .74 approx. That's too high. Try t = 100: .97^100 = .04 approx. That's too low. So try a number between 10 and 100, probably closer to 100. Try 70: .97^70 = .118. Lucky guess. That's close to .125 but a little low. {Try 65: .97^65 = .138. Too high. Try a number between 65 and 70, closer to 70 but not too much closer. Try 68: .97^68 = .126. That's good to the nearest whole number. The process could be continued and refined to get more accurate values of t. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qWhat are your ratios of temperature excess to average rate, and are they nearly constant? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: With the function of 50 * .97^t t = 0, 4, 7, 9 with the resulting values of: 50, 44.2646405, 40.39914224, 38.01155293: Giving you the 1st average rate change of: -5.7353595, -3.86549826, -2.38758931 Giving us or second rate change of: 1.86986124, 1.47790895 ???? I know that temperature difference2 / T D1 = ave. rate 2 / ave. rate 1, I dont quite know if this is what you are asking and exactly how to find the TD ???? Confidence rating: unsure ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** If the function is 50 (.97^t) then at t = 0, 17, 34, 51, 68 we have function values 50, 29.79130219, 17.75043372, 10.57617070, 6.301557949 and average rates of change -1.18756929, -0.7082863803, -0.4220154719, -0.2514478090, -0.1498191533. Trapezoids have 'average altitudes' 39.89565109, 23.77086796, 14.16330221, 8.438864327. Ratio of temp excess to ave rate, using 'average altitudes' as temp excess, are therefore 39.9 / (-1.19), 23.8 / (-.708), 14.2 / (-.422), 8.44 / (-.251). These quantities vary slightly but all are close to the same value around 33. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ???? I dont understand why you used a trapezoid and the altitude for the ave rate. I would like to know how to actually use the data given to figure out the average rate. Could you please explain ????
.............................................
Given Solution: `a** STUDENT RESPONSE: The temperature falls to 50/2 = 25 at t = 22.75. The temperature falls to 25/2 = 12.5 at t = 45.51 The temperature falls to 12.5/2 = 6.25 at t = 68.26. The time interval required for each subsequent fall is very close to 22.75, demonstrating that the half-life is constant. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qGive the original and the simplified equation to determine the time required for Texcess to fall to half its original value. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The original equation is: Texcess(t) = 50(.97^t) = 50(.97^0) = 50 and half of that is 25. Then you would simplify your new equation which is: 50(.97^t) = 25 .97^t = ½ you time after trial and error is approx 23. Confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Texcess has an original value at t = 0, which gives us Texcess(0) = 50 * .97^0 = 50. Half its original value is therefore 25. So our equation is 25 = 50 * .97^t. This equation is simplified by dividing both sides by 50 to get .97^t = 1/2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 12. Texcess(t) = 50(.97^t), room temperature {{ 25 if you used Celsius and 75 if you used Farenheit in your observations What function Temp(t) gives temperature as a function of time? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Considering my observations were in Fahrenheit I would simply add that to my original equation giving you: 50(.97^t) + 75 Confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Using 75 for room temperature and realizing that temperature is room temperature + temperature excess we obtain the function Temp(t)=50(.97^t)+75.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok, note temp. is room temp. + excess. Self-critique rating: ********************************************* Question: `qIdentify the values of A, b and c in the generalized form y = A b^x + c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = 50 b= .97 c = 75 Confidence rating: positive ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Since the function is Temp(t) = 50(.97^t)+75 , the y = A b^x + c has y = Temp(t), A = 50, b = .97 and c = 75. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: ********************************************* Question: `qproblem 14. Antiobiotic removal, 40 mg/hour when there are 200 milligrams present At what rate would antibiotic be removed when there are 70 milligrams present? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Since this is a proportionality question you would use y = k x: y is your amount of removal and x is amount, then we solve for k: 40 = k * 200 .k = 40 / 200 ..k = .2 Function y = .2 x: then we substitute the amount of 70 in the x place: y = .2 * 70 . y = 14 mg / hr Confidence rating: positive. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** If the rate of removal is directly proportional the quantity present then we have y = k x where y is the rate of removal and x the amount present. Since y = 40 when x = 200 we have 40 = k * 200 so that k = 40/200 = .2. Thus y = .2 x. If x = 70 then we have y = .2 * 70 = 14. When there are 70 mg present the rate of removal is 14 mg/hr. ** Add comments on any surprises or insights you experienced as a result of this assignment. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok Self-critique rating: "