#$&* course Mth 163 009.
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 1.1 x1 + .8) and the coordinates of the x = x2 point are ( x2, 1.1 x2 + .8). The rise between the two points is therefore rise = (1.1 x2 + .8) - (1.1 x1 + .8) = 1.1 x2 + .8 - 1.1 x1 - .8 = 1.1 x2 - 1.1 x1. The run is run = x2 - x1. The slope is therefore (1.1 x2 - 1.1 x1) / (x2 - x1) = 1.1 (x2 - x1) / (x2 - x1) = 1.1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ???Does it matter if I put x1 first in the problem???
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7). The rise between the two points is therefore rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1. The run is run = x2 - x1. The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-criti " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: 2 ********************************************* Question: `q002. For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1? What are the coordinates of the x = x2 point, in terms of the symbol x2? What therefore is the rise between these two points, and what is the run? What is the average slope of the graph between these two points? Be sure to simplify your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The coordinates are (x1, 3.4x1 + 7) and (x2, 3.4x2 + 7) Rise = (3.4x2 + 7) - (3.4x1 + 7) = 3.4x2 - 3.4x1 Run = x2 - x1 Slope is (3.4 x2 - 3.4x1) / (x2 - x1) = 3.4(x2 - x1) / (x2 - x1) = 3.4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7). The rise between the two points is therefore rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1. The run is run = x2 - x1. The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-criti " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! 2 ********************************************* Question: `q002. For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1? What are the coordinates of the x = x2 point, in terms of the symbol x2? What therefore is the rise between these two points, and what is the run? What is the average slope of the graph between these two points? Be sure to simplify your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The coordinates are (x1, 3.4x1 + 7) and (x2, 3.4x2 + 7) Rise = (3.4x2 + 7) - (3.4x1 + 7) = 3.4x2 - 3.4x1 Run = x2 - x1 Slope is (3.4 x2 - 3.4x1) / (x2 - x1) = 3.4(x2 - x1) / (x2 - x1) = 3.4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7). The rise between the two points is therefore rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1. The run is run = x2 - x1. The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-criti " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!