Assignment 9 qa

#$&*

course Mth 163

009. 

 

*********************************************

Question:  `q001.    Note that this assignment has 2 questions

 

For the function y = 1.1 x + .8, what are the coordinates of the x = x1 point, in terms of the symbol x1?  What are the coordinates of the x = x2 point, in terms of the symbol x2? 

 

What therefore is the rise between these two points, and what is the run?

 

What is the average slope of the graph between these two points?  Be sure to simplify your result.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 The coordinates are (x1, 1.1x1 + .8) and (x2, 1.1x2 + .8)

 Rise = (1.1x1 + .8) - (1.1x2 + .8) = 1.1x1 - 1.1x2

 Run = x1 - x2

Slope = (1.1x1 - 1.1x2) / (x1 - x2) = 1.1(x1 - x2) / (x1 - x2) = 1.1

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution: 

In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 1.1 x1 + .8) and the coordinates of the x = x2 point are ( x2, 1.1 x2 + .8).

 

The rise between the two points is therefore

 

rise = (1.1 x2 + .8) - (1.1 x1 + .8) = 1.1 x2 + .8 - 1.1 x1 - .8 = 1.1 x2 - 1.1 x1.

 

The run is

 

run = x2 - x1. 

 

The slope is therefore (1.1 x2 - 1.1 x1) / (x2 - x1) = 1.1 (x2 - x1) / (x2 - x1) = 1.1.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 ???Does it matter if I put x1 first in the problem???

 

 

@& You were consistent between numerator and denominator, so it came out the same. Generally we do later - earlier, so it would be x2 - x1, but that's just a matter of convension. As long as you don't switch the order of the subtraction, it work fine either way.*@

------------------------------------------------

Self-critique rating:

2

*********************************************

Question:  `q002.  For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1?  What are the coordinates of the x = x2 point, in terms of the symbol x2? 

 

What therefore is the rise between these two points, and what is the run?

 

What is the average slope of the graph between these two points?  Be sure to simplify your result.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 The coordinates are (x1, 3.4x1 + 7) and (x2, 3.4x2 + 7)

Rise = (3.4x2 + 7) - (3.4x1 + 7) = 3.4x2 - 3.4x1

Run = x2 - x1

Slope is (3.4 x2 - 3.4x1) / (x2 - x1) = 3.4(x2 - x1) / (x2 - x1) = 3.4

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution: 

In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7).

 

The rise between the two points is therefore

 

rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1.

 

The run is

 

run = x2 - x1. 

 

The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

Self-criti

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

2

*********************************************

Question:  `q002.  For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1?  What are the coordinates of the x = x2 point, in terms of the symbol x2? 

 

What therefore is the rise between these two points, and what is the run?

 

What is the average slope of the graph between these two points?  Be sure to simplify your result.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 The coordinates are (x1, 3.4x1 + 7) and (x2, 3.4x2 + 7)

Rise = (3.4x2 + 7) - (3.4x1 + 7) = 3.4x2 - 3.4x1

Run = x2 - x1

Slope is (3.4 x2 - 3.4x1) / (x2 - x1) = 3.4(x2 - x1) / (x2 - x1) = 3.4

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution: 

In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7).

 

The rise between the two points is therefore

 

rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1.

 

The run is

 

run = x2 - x1. 

 

The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

Self-criti

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

2

*********************************************

Question:  `q002.  For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1?  What are the coordinates of the x = x2 point, in terms of the symbol x2? 

 

What therefore is the rise between these two points, and what is the run?

 

What is the average slope of the graph between these two points?  Be sure to simplify your result.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 The coordinates are (x1, 3.4x1 + 7) and (x2, 3.4x2 + 7)

Rise = (3.4x2 + 7) - (3.4x1 + 7) = 3.4x2 - 3.4x1

Run = x2 - x1

Slope is (3.4 x2 - 3.4x1) / (x2 - x1) = 3.4(x2 - x1) / (x2 - x1) = 3.4

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution: 

In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7).

 

The rise between the two points is therefore

 

rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1.

 

The run is

 

run = x2 - x1. 

 

The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

Self-criti

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#