QUERY4

course MTH 272

02/23, 1200

assignment #004004. `query 4

Applied Calculus II

02-14-2010

......!!!!!!!!...................................

18:15:45

4.6.06 (was 4.5.06) y = C e^(kt) thru (3,.5) and (4,5)

......!!!!!!!!...................................

RESPONSE -->

y=Ce^(kt)

.5=Ce^(3k)

5=Ce^(4k)

5/(e^(4k))=C

.5 = [5/(e^(4k))] e^(3k)

.5 = 5/(e^k)

.5 e^k = 5

e^k=10

ln e^k=ln 10

k=2.30

5/(e^(4*2.3)) =C

.0005=C

y=.0005e^(2.3t)

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

18:15:57

Substituting the coordinates of the first and second points into the form y = C e^(k t) we obtain the equations

.5 = C e^(3*k)and

5 = Ce^(4k) .

Dividing the second equation by the first we get

5 / .5 = C e^(4k) / [ C e^(3k) ] or

10 = e^k so

k = 2.3, approx. (i.e., k = ln(10) )

Thus .5 = C e^(2.3 * 3)

.5 = C e^(6.9)

C = .5 / e^(6.9) = .0005, approx.

The model is thus close to y =.0005 e^(2.3 t). **

......!!!!!!!!...................................

RESPONSE -->

------------------------------------------------

Self-critique rating #$&*: 3

.................................................

......!!!!!!!!...................................

18:17:52

4.6.10 (was 4.5.10) solve dy/dt = 5.2 y if y=18 when t=0

......!!!!!!!!...................................

RESPONSE -->

y=Ce^(kt)

18=Ce^(k*0)

18=Ce^0

18=C

y=18e^(5.2t)

k>0...Exponential Growth

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

18:18:06

The details of the process:

dy/dt = 5.2y. Divide both sides by y to get

dy/y = 5.2 dt. This is the same as

(1/y)dy = 5.2dt. Integrate the left side with respect to y and the right with respect to t:

ln | y | = 5.2t +C. Therefore

e^(ln y) = e^(5.2 t + c) so

y = e^(5.2 t + c). This is the general function which satisfies dy/dt = 5.2 y.

Now e^(a+b) = e^a * e^b so

y = e^c e^(5.2 t). e^c can be any positive number so we say e^c = A, A > 0.

y = A e^(5.2 t). This is the general function which satisfies dy/dt = 5.2 y.

When t=0, y = 18 so

18 = A e^0. e^0 is 1 so

A = 18. The function is therefore

y = 18 e^(5.2 t). **

......!!!!!!!!...................................

RESPONSE -->

------------------------------------------------

Self-critique rating #$&*: 3

.................................................

......!!!!!!!!...................................

18:22:25

4.6.25 (was 4.5.25) init investment $750, rate 10.5%, find doubling time, 10-yr amt, 25-yr amt) New problem is init investment $1000, rate 12%.

......!!!!!!!!...................................

RESPONSE -->

A=Pe^(rt)

P=1000

r=.12

A.) Doubling Time

2P=Pe^(rt)

2=e^(.12t)

ln 2=ln e^(.12t)

.693=.12t

5.78yrs.=t

B.) A=1000e^(.12*10)

A=$3320, after 10 years

C.) A=1000e^(.12*25)

A=$20,085 after 25 years

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

18:23:13

When rate = .105 we have

amt = 1000 e^(.105 t) and the equation for the doubling time is

750 e^(.105 t) = 2 * 750. Dividing both sides by 750 we get

e^(.105 t) = 2. Taking the natural log of both sides

.105t = ln(2) so that

t = ln(2) / .105 = 6.9 yrs approx.

after 10 years

amt = 750e^.105(10) = $2,143.24

after 25 yrs

amt = 7500 e^.105(25) = $10,353.43 *

......!!!!!!!!...................................

RESPONSE -->

Differing values between given and #25 in the book.

------------------------------------------------

Self-critique rating #$&*: 3

.................................................

......!!!!!!!!...................................

18:34:01

4.6.44 (was 4.5.42) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

......!!!!!!!!...................................

RESPONSE -->

p=Ce^(kx)

(300,5)

5=Ce^(300k)

5/(e^(300k))=C

(400,4)

4=Ce^(400k)

4=(5/(e^(300k))*(e^400k)

4=5*(e^100k)

(4/5)= e^100k

ln (.8) = ln e^(100k)

-.223=100k

-.002=k

5/(e^(300k))=C

5/(e^(300*-.002)=C

9.11=C

y=9.11e^(-.002k)

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

18:34:30

You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

......!!!!!!!!...................................

RESPONSE -->

------------------------------------------------

Self-critique rating #$&*: 3

.................................................

&#This looks good. Let me know if you have any questions. &#