QUERY10

course MTH 272

04/11/10, 1900

assignment #010010. `query 10

Applied Calculus II

04-05-2010

......!!!!!!!!...................................

13:47:55

5.5.23 (was 5.5.28 area in region defined by y=8/x, y = x^2, x = 1, x = 4

......!!!!!!!!...................................

RESPONSE -->

8/x = x^2

0=x^2 - (8/x)

0= (1/x) ((x^3) - 8)

x^3 - 8 = 0

x^3=8

x=2

x=1,2,4

(x^2 - (8/x)) dx on [1,2] + ((8/x) - x^2) dx on [2,4]

((x^3)/3 - 8 ln x) + (8 ln x - (x^3)/3)

[((8/3) - 8 ln 2) - ((1/3) - 8 ln 1)] + [((-64/3) + 8 ln 4) - ((-8/3) + 8 ln 2)]

[((7/3) - 8 ln 2) + ((-56/3) + 8 ln 2)]

-49/3

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

13:48:10

These graphs intersect when 8/x = x^2, which we solve to obtain x = 2.

For x < 2 we have 8/x > x^2; for x > 2 the inequality is the reverse.

So we integrate 8/x - x^2 from x = 1 to x = 2, and x^2 - 8 / x from x = 2 to x = 4.

Antiderivative are 8 ln x - x^3 / 3 and x^3 / 3 - 8 ln x. We obtain

8 ln 2 - 8/3 - (8 ln 1 - 1/3) = 8 ln 2 - 7/3 and

64/3 - 8 ln 4 - (8 ln 2 - 8/3) = 56/3 - 8 ln 2.

Adding the two results we obtain 49/3. **

......!!!!!!!!...................................

RESPONSE -->

Instead of having a positive 49/3, I found a negative 49/3. I switched two terms around in the second function so

that its format would mirror that of the first function. It is likely that this is the area where I misplaced a

negative sign.

------------------------------------------------

Self-critique rating #$&*ent: 2

.................................................

......!!!!!!!!...................................

13:50:24

5.5.44 (was 5.5.40 demand p1 = 1000-.4x^2, supply p2=42x

......!!!!!!!!...................................

RESPONSE -->

p1=p2

1000 - .4x^2 = 42x

0=.4x^2 + 42x - 1000

.4(x^2 + 105x - 2500)

.4(x + 125)(x - 20)

x=-125,20

x=20

Demand

p1=1000 - .4(20^2)

p1=840

Supply

p2=42(20)

p2=840

Consumer Surplus (on the interval [0,20])

integral [demand function - price] dx

1000 - .4x^2 - 840

1000x - (4/10)(1/3)x^3 - 840x

160x - (2/15)x^3

[ 160(20) - (2/15)(20^3) ] - 0

2133.33

Producer Surplus (on the interval [0,20])

integral [price - supply function] dx

840 - 42x

840x - 21x^2

[840(20) - 21(20^2)] - 0

8400

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

13:51:40

1000-.4x^2 = 42x is a quadratic equation. Rearrange to form

-.4 x^2 - 42 x + 1000 = 0 and use the quadratic formula.

You get x = 20

At x = 20 demand is 1000 - .4 * 20^2 = 840, supply is 42 * 20 = 840.

The demand and supply curves meet at (20, 840).

The area of the demand function above the equilibrium line y = 840 is the integral of 1000 - .4 x^2 - 840 = 160 -

.4 x^2, from x = 0 to the equlibrium point at x = 20. This is the consumer surplus.

The area of the supply function below the equilibrium line is the integral from x = 0 to x = 20 of the function 840

- 42 x. This is the producer surplus.

The consumer surplus is therefore integral ( 160 - .4 x^2 , x from 0 to 20) = 2133.33 (antiderivative is 160 x - .4

/ 3 * x^3). *&*&

......!!!!!!!!...................................

RESPONSE -->

------------------------------------------------

Self-critique rating #$&*ent: 3

............................................"

&#Your work looks good. Let me know if you have any questions. &#

#$&*