QUERY11

course MTH 272

04/11/10, 1900

assignment #011011. `query 11

Applied Calculus II

04-05-2010

......!!!!!!!!...................................

13:56:49

5.5.4 (previous probme was 5.6.2 midpt rule n=4 for `sqrt(x) + 1 on [0,2])

5.5.4 asks for an n = 4 midpoint-rule approximation to the integral of 1 - x^2 on the interval [-1, 1].

......!!!!!!!!...................................

RESPONSE -->

f(x)= 1 - x^2 [-1,1], n=4

delta x= (1 - -1)/4 = 1/2

[-1, -1/2],[-1/2,0],[0,1/2],[1/2,1]

Midpoints: -3/4, -1/4, 1/4, 3/4

1/2 ( 1 - (x^2)) dx

1/2[.4375 + .9375 + .9375 + .4375]

1.375

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

13:56:59

Dividing [-1, 1] into four intervals each will have length ( 1 - (-1) ) / 4 = 1/2. The four intervals are

therefore

[-1, -.5], [-.5, 0], [0, 5], [.5,1].

The midpoints are -.75, .25, .25, .75. You have to evaluate 1 - x^2 at each midpoint. You get y values .4375,

.9375, .9375 and .4375. These values will give you the altitudes of the rectangles used in the midpoint

approximation.

The width of each rectangle is the length 1/2 of the interval, so the areas of the rectangles will be 1/2 *

.4375,1/2 * .9375, 1/2 * .9375 and 1/2 * .4375, or .21875, .46875, .46875, .21875.

Adding these areas we get total area 1.375.

The curve is concave down so the midpoints will give you values which are a little high. We confirm this by

calculating the integral:

The exact integral is integral(1 - x^2, x from 0 to 2). An antiderivative is x - 1/3 x^2; evaluating from -1 to 1

we find that the antiderivative changes from -2/3 to 2/3, a change of 4/3 = 1.333. So the accurate integral is 4/3

= 1.333 and our estimate 1.375 is indeed a little high. ** DER

......!!!!!!!!...................................

RESPONSE -->

------------------------------------------------

Self-critique rating #$&*ent: 3

.................................................

......!!!!!!!!...................................

14:02:00

5.6. 9 (was 5.6.12) (was 5.6.10 midpt rule n=4 for x^2-x^3 on [-1,0]

......!!!!!!!!...................................

RESPONSE -->

f(x)=(x^2) - (x^3) [-1,0], n=4

delta x= (0 - -1)/4= 1/4

[-1, -3/4],[-3/4,-2/4],[-2/4,-1/4],[-1/4,0]

Midpoints: -7/8, -5/8, -3/8, -1/8

(1/4) (x^2 - x^3) dx

.5703

Actual: (x^3)/3 - (x^4)/4

(-1/3) - (1/4)

.583

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

14:02:16

The four intervals are (-1, -3/4), (-3/4, -1/2), (-1/2, -1/4) and (-1/4, 0); in decimal form these are (-1, -.75),

(-.75, -.5), (-.5, -.25) and (-.25, 0).

The midpoints of these intervals are-7/8, -5/8, -3/8 and -1/8; in decimal form we get -.875, -.625, -.375, -.125.

The values of the rectangle heights at the midpoints are found by evaluating x^2 - x^3 at the midpoints; we get

respectively 735/512, 325/512, 99/512 and 9/512, or in decimal form 1.435546875; 0.634765625; 0.193359375;

0.017578125.

The approximating rectangles each have width 1/4 or .25 so the areas arerespectively 735/2048 325/2048, 99/2048,

9/2048, or in decimal form 0.3588867187; 0.1586914062; 0.04833984375; 0.00439453125. The total area is (735 + 325

+ 99 + 9) / 2048 = /2048 = 73/128, or in decimal form approximately .5703.

An antiderivative of the function is x^3 / 3 - x^4 / 4; evaluating from -1 to 0 we obtain 1/3 + 1/4 = 7/12 =

.5833... . So the midpoint approximation is low by about .013 units. ** DER

......!!!!!!!!...................................

RESPONSE -->

------------------------------------------------

Self-critique rating #$&*ent: 3

................................................."

&#This looks very good. Let me know if you have any questions. &#