course MTH 272 05/09,1830 assignment #025025.
......!!!!!!!!...................................
17:30:49 Query problem 7.3.14 f(x+`dx,y) and [ f(x, y+`dy) - f(x,y) ] / `dy.
......!!!!!!!!...................................
RESPONSE --> 3xy + y^2 f(x+`dx,y) 3(x + 'dx)y + y^2 3xy + 3'dxy + y^2 y(3x + 3'dx + y) [ f(x, y+`dy) - f(x,y) ] / `dy. [(3x(y + 'dy) + y^2 + 2y'dy + 'dy^2) - (3xy + y^2) ] / 'dy (3x'dy + 2y'dy + 'dy^2) / 'dy 'dy(3x + 2y + 'dy)/'dy 3x + 2y +'dy confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
17:31:10 Give the expressions for f(x+`dx,y) and [ f(x, y+`dy) - f(x,y) ] / `dy.
......!!!!!!!!...................................
RESPONSE --> f(x+`dx,y) 3(x + 'dx)y + y^2 3xy + 3'dxy + y^2 y(3x + 3'dx + y) [ f(x, y+`dy) - f(x,y) ] / `dy. [(3x(y + 'dy) + y^2 + 2y'dy + 'dy^2) - (3xy + y^2) ] / 'dy (3x'dy + 2y'dy + 'dy^2) / 'dy 'dy(3x + 2y + 'dy)/'dy 3x + 2y +'dy confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
17:31:38 If your expression for [ f(x, y+`dy) - f(x,y) ] / `dy is not simplified, give the simplified expression.
......!!!!!!!!...................................
RESPONSE --> Expression is simplified (3x + 2y + 'dy). confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
17:38:32 What is your interpretation of the expression [ f(x, y+`dy) - f(x,y) ] / `dy, and what is its significance?
......!!!!!!!!...................................
RESPONSE --> The first value f(x, y + 'dy) includes the oringinal x value and the y value added to the change in y. The values subtracted from this, f(x,y), are the original values of x and y. So, theoretically, the only difference here should be the 'dy or the change in the y value. (x, y + 'dy) - (x, y) ='dy The numerator is then divided by a denominator that expresses the change in y value, 'dy. Being identical to the numberator, the value should be 1. 'dy/'dy =1 However, using the given equation of 3xy + y^2, our values become altered and differ by more than simply the change in y values. This is evident by the linear equation we receive as an answer here: 3x + 2y + 'dy. confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
17:40:45 Query problem 7.3.18 domain of ln(x+y)
......!!!!!!!!...................................
RESPONSE --> ln (x + y) As ln (0) is undefined, x + y > 0 must be the domain. The range must similarly be greater than 0. confidence rating #$&* 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
17:42:01 Give the domain of the given function and describe this region in the xy plane.
......!!!!!!!!...................................
RESPONSE --> Domain must be greater than zero. Therefore, I believe that the graph of this function would lie above the xy plane without actually having any intercepts within it. confidence rating #$&* 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
17:43:09 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> Number 18 involving the ln (x + y) was particularly challeging to me and I have little faith in my answers. Natural log and exponentials always present a stumbling block for me. confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................