course MTH 272 05/12,2300 assignment #031031. `query
......!!!!!!!!...................................
22:06:09 Query problem 7.7.4 points (1,0), (2,0), (3,0), (3,1), (4,1), (4,2), (5,2), (6,2)
......!!!!!!!!...................................
RESPONSE --> points (1,0), (2,0), (3,0), (3,1), (4,1), (4,2), (5,2), (6,2) y=.5x - .75 confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
22:07:38 Give the equation of the least squares regression line and explain how you obtained the equation.
......!!!!!!!!...................................
RESPONSE --> y=.5x - .75 This equation was obtained using the linear regression function on my calculator. By entering the given points, a scatter plot is formed. The linear regression function then forms a line that best fits the plotted points. confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
22:09:47 What is the sume of the squared errors?
......!!!!!!!!...................................
RESPONSE --> S=[-.25 - 0]^2 + [.25 - 0]^2 + [.75-0]^2 + [.75 - 1]^2 + [1.25 - 1]^2 + [1.25 - 2]^2 + [2.5 - 2]^2 + [3-2]^2 S=2.625 confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
22:22:21 Query problem 7.7.6 (was 7.7.16) use partial derivatives,etc., to find least-squares line for (-3,0), (-1,1), (1,1), (3,2)
......!!!!!!!!...................................
RESPONSE --> (-3,0), (-1,1), (1,1), (3,2) S=[-3a + b - 0]^2 + [-a + b -1]^2 + [a + b -1]^2 + [3a+ b - 2]^2 S=20a^2 + 4b^2 - 12a - 8b + 6 fa=40a - 12 40a - 12=0 40a=12 a=12/40=3/10 fb=8b - 8 8b - 8=0 8b=8 b=1 y=(3/10)x + 1 confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
22:22:38 Give the equation of the desired line.
......!!!!!!!!...................................
RESPONSE --> y=(3/10)x + 1 confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
22:22:55 What was your expression for the sum of the squared errors?
......!!!!!!!!...................................
RESPONSE --> (-3,0), (-1,1), (1,1), (3,2) S=[-3a + b - 0]^2 + [-a + b -1]^2 + [a + b -1]^2 + [3a+ b - 2]^2 S=20a^2 + 4b^2 - 12a - 8b + 6 confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.................................................
......!!!!!!!!...................................
22:24:32 How did you minimize this expression (be specific)?
......!!!!!!!!...................................
RESPONSE --> This expression was minimized by first expanding each part of the equation by squaring it. Then, the like terms were all grouped and added/subtracted. confidence rating #$&* 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
................................................."