QUERY31

course MTH 272

05/12,2300

assignment #031031. `query

Applied Calculus II

05-12-2010

......!!!!!!!!...................................

22:06:09

Query problem 7.7.4 points (1,0), (2,0), (3,0), (3,1), (4,1), (4,2), (5,2), (6,2)

......!!!!!!!!...................................

RESPONSE -->

points (1,0), (2,0), (3,0), (3,1), (4,1), (4,2), (5,2), (6,2)

y=.5x - .75

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

22:07:38

Give the equation of the least squares regression line and explain how you obtained the equation.

......!!!!!!!!...................................

RESPONSE -->

y=.5x - .75

This equation was obtained using the linear regression function on my calculator. By entering the given points, a scatter plot is formed. The linear regression function then forms a line that best fits the plotted points.

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

22:09:47

What is the sume of the squared errors?

......!!!!!!!!...................................

RESPONSE -->

S=[-.25 - 0]^2 + [.25 - 0]^2 + [.75-0]^2 + [.75 - 1]^2 +

[1.25 - 1]^2 + [1.25 - 2]^2 + [2.5 - 2]^2 + [3-2]^2

S=2.625

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

22:22:21

Query problem 7.7.6 (was 7.7.16) use partial derivatives,etc., to find least-squares line for (-3,0), (-1,1), (1,1), (3,2)

......!!!!!!!!...................................

RESPONSE -->

(-3,0), (-1,1), (1,1), (3,2)

S=[-3a + b - 0]^2 + [-a + b -1]^2 + [a + b -1]^2 + [3a+ b - 2]^2

S=20a^2 + 4b^2 - 12a - 8b + 6

fa=40a - 12

40a - 12=0

40a=12

a=12/40=3/10

fb=8b - 8

8b - 8=0

8b=8

b=1

y=(3/10)x + 1

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

22:22:38

Give the equation of the desired line.

......!!!!!!!!...................................

RESPONSE -->

y=(3/10)x + 1

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

22:22:55

What was your expression for the sum of the squared errors?

......!!!!!!!!...................................

RESPONSE -->

(-3,0), (-1,1), (1,1), (3,2)

S=[-3a + b - 0]^2 + [-a + b -1]^2 + [a + b -1]^2 + [3a+ b - 2]^2

S=20a^2 + 4b^2 - 12a - 8b + 6

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

22:24:32

How did you minimize this expression (be specific)?

......!!!!!!!!...................................

RESPONSE -->

This expression was minimized by first expanding each part of the equation by squaring it. Then, the like terms were all grouped and added/subtracted.

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

................................................."

&#Good responses. Let me know if you have questions. &#