assignment 7

#$&*

course MTH 277

6/29

Question: `q001. If z = 1, then what is the resulting equation in y and z? Put this equation into the standard form of a conic section, identify that conic section, and sketch it.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If z = 1 then the equation is x^2 / 25 + y^2 / 4 - 1 = 0,

which can be written

x^2 / 25 + y^2 / 4 = 1.

This is of the form x^2 / a^2 + y^2 / b^2 = 1, with a = 5 and b = 2.

This is an ellipse centered at the origin, with semi-major axis 5 in the x direction and semi-minor axis 2 in the y direction.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If z = 1 then the equation is x^2 / 25 + y^2 / 4 - 1 = 0,

which can be written

x^2 / 25 + y^2 / 4 = 1.

This is of the form x^2 / a^2 + y^2 / b^2 = 1, with a = 5 and b = 2.

This is an ellipse centered at the origin, with semi-major axis 5 in the x direction and semi-minor axis 2 in the y direction.

Its graph looks like this:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q002. Answer the same for z = 2. Compare your sketch to your sketch for the first question.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If z = 2 we get

x^2 / 25 + y^2 / 4 - 2^2 = 0, or

x^2 / 25 + y^2 / 4 = 4

which is put into standard form (which requires 1 on the right-hand side) by dividing both sides by 4. We obtain

x^2 / 100 + y^2 / 16 = 1,

which is an ellipse with semi-axes 10 and 4.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If z = 2 we get

x^2 / 25 + y^2 / 4 - 2^2 = 0, or

x^2 / 25 + y^2 / 4 = 4

which is put into standard form (which requires 1 on the right-hand side) by dividing both sides by 4. We obtain

x^2 / 100 + y^2 / 16 = 1,

which is an ellipse with semi-axes 10 and 4.

Its graph, and the graph of the ellipse from the preceding problem, looks like this:

The first ellipse is at z = 1, which is the plane parallel to the xy plane, lying 1 unit above the xy plane.

The second ellipse is at z = 2, which is the plane parallel to the xy plane, lying 2 units above the xy plane.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q003. Answer the same for z = 3, and make the same comparison.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You will find that for z = 3 we get the ellipse

x^2 / 225 + y^2 / 36 = 1

with semi-axes 15 and 6.

A sketch of all three ellipses will show the ellipses growing linearly with the value of z, and you should visualize and attempt to sketch the ellipses on their respective planes z = 1, z = 2 and z = 3.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

You will find that for z = 3 we get the ellipse

x^2 / 225 + y^2 / 36 = 1

with semi-axes 15 and 6.

A sketch of all three ellipses will show the ellipses growing linearly with the value of z, and you should visualize and attempt to sketch the ellipses on their respective planes z = 1, z = 2 and z = 3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q004. If your sketches for the preceding three questions were made on transparent material and stacked, with their centers in a vertical line and the first being 1 unit above the tabletop, the second being 2 units above, and the third three units above, what 3-dimensional shape would they suggest?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It would suggest a cone shape.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:

ok

*********************************************

Question: `q005. What would the intersection of this 3-dimensional shape with the x-z plane look like?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: it would be a bunch of ellipses on top of eachother.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The plot would be a 3-dimensional surface consisting of a series of 'stacked' ellipses.

Plotted along with the plane z = 1 inside the rectangular region indicated below, in which x and y vary from -5 to 5 and z from 0 to 3, we see the elliptical z = 1 intersection.

Adding the z = 2 plane to the figure, we see part of the ellipse as it intersects that plane:

From the 'front' the figure looks like this:

From the 'side' the lower part looks like this:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q006. What would the intersection of this 3-dimensional shape with the x-y plane look like?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In the x-y plane our x and y values are both zero so our equation becomes jus

-z^2 = 0

with solution z = 0.

Thus when restricted to the x-y plane the surface consists of just the one point (0, 0, 0), the origin.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

In the x-y plane our x and y values are both zero so our equation becomes jus

-z^2 = 0

with solution z = 0.

Thus when restricted to the x-y plane the surface consists of just the one point (0, 0, 0), the origin.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q007. The plane x = 1 is parallel to the y-z plane, but passes through the x axis at x coordinate 1. What would the intersection of this plane with the surface look like?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If x = 1 the surface becomes

1^2 / 25 + y^2 / 4 - z^2 = 0

so that

z^2 = y^2 / 4.

Solving for z we get

z = +- y / 2.

The intersection of the surface with the plane x = 1 consists of the two straight lines

z = y / 2

and

z = -y / 2,

both through the origin, one with slope 1/2 the other with slope -1/2.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

If x = 1 the surface becomes

1^2 / 25 + y^2 / 4 - z^2 = 0

so that

z^2 = y^2 / 4.

Solving for z we get

z = +- y / 2.

The intersection of the surface with the plane x = 1 consists of the two straight lines

z = y / 2

and

z = -y / 2,

both through the origin, one with slope 1/2 the other with slope -1/2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q008. If y = 2, then what is the resulting equation in x and z? Put this equation into the standard form of a conic section, identify that conic section and sketch it.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If y = 2 we get

x^2 / 25 + 2^2 / 4 - z^2 = 0

so that

x^2 / 25 - z^2 = -1

and

-x^2 / 25 + z^2 = 1.

This is a hyperbola with vertices at (0, 1) and (0, -1) in the x-z plane, asymptotic to the lines z = x / 5 and z = -x / 5 (the lines with slope 1/5 and -1/5, through the origin).

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

If y = 2 we get

x^2 / 25 + 2^2 / 4 - z^2 = 0

so that

x^2 / 25 - z^2 = -1

and

-x^2 / 25 + z^2 = 1.

This is a hyperbola with vertices at (0, 1) and (0, -1) in the x-z plane, asymptotic to the lines z = x / 5 and z = -x / 5 (the lines with slope 1/5 and -1/5, through the origin).

The figure below shows the upper half of the hyperbola:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q009. Repeat the above for y = 4, then for y = 6.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If y = 4 we get

x^2 / 25 - z^2 = -4

which rearranges to standard form

z^2 / 4 - x^2 / 100 = 1.

The vertices are at (0, 2) and (0, -2), and the asymptotes are still the lines z = 1/5 x and z -1/5 x.

For y = 6 the asymptotes are still the same, with vertices (0, 3) and (0, -3).

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If y = 4 we get

x^2 / 25 - z^2 = -4

which rearranges to standard form

z^2 / 4 - x^2 / 100 = 1.

The vertices are at (0, 2) and (0, -2), and the asymptotes are still the lines z = 1/5 x and z -1/5 x.

For y = 6 the asymptotes are still the same, with vertices (0, 3) and (0, -3).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating:ok

*********************************************

Question: `q010. Your last three sketches describe the intersection of the surface x^2 / 25 + y^2 / 4 - z^2 = 0 with the planes y = 2, y = 4 and y = 6, each plane being parallel to the x-z plane and passing through the y axis at the indicated coordinate. Explain how your sketches are consistent with the surface as you described it, based on the three stacked graphs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

All three are ellipses stacked

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok?

------------------------------------------------

Self-critique rating:ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. Let me know if you have any questions. &#