#$&* course MTH 277 7/1/13 Note that ` in front of a symbol indicates that the symbol is a vector. The only exception: `d means 'Delta'. I will eventually search-replace the document to convert the notation to boldface.If `R(t) = sin(t) `i + cos(`t) j + t `k then:
.............................................
Given Solution: `v(t) = `R ' (t) = -cos(t) `i + sin(t) `j + `k `a(t) = `v ' (t) = `r '' (t) = sin(t) `i + cos(t) `j &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q002. What is the function describing the unit tangent vector? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: V(t)= cos(t) I - sin(t)j +1 k Magnitude Sqrt(cos^2(t)+1+sin^2(t)=sqrt(2) V(t)/mag= answer confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: Divide `v(t) by || `v(t) || and simplify &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q003. What is the component of the acceleration vector in the direction of the unit tangent vector? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: V(t)/magnitude*a(t)= Atan(t)=(-sin(t)I -cos(t) j +0 k)V(t)/v magnitude confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: The component is denoted `a_T (t) . The desired component is the projection of `a(t) on `T(t). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok
.............................................
Given Solution: Subtract the component `a_T(t) from `a(t). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q005. What is the normal component of the acceleration? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Same as the last one. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: This is the component perpendicular to the unit tangent vector. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q006. Show that the normal component of the acceleration is perpendicular to the tangential component. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The dot products equal 0. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Two vectors are perpendicular if their dot product is zero. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q007. Show that the direction of the derivative of the unit tangent vector is the same as that of the unit normal vector. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: when the angle is 0. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: Two vectors are parallel if the cosine of the angle between them is zero. How therefore can to test to see if the vectors are parallel? What further test allows us to determine if they are in the same direction, vs. in the opposite directions. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. Find the unit normal vector. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: =-(-sin(t)I -cos(t) j +0 k)V(t)/v magnitude+ sin(t)I -cos(t) j +0 k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: You have at least one vector in the normal direction (in fact in the preceding questions you have found two). Use either to find the unit normal. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q009. Find the unit binormal vector. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -(-sin(t)I -cos(t) j +0 k)V(t)/v magnitude+ sin(t)I -cos(t) j +0 k + cos(t) I - sin(t)j +1 k /sqrt(2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: You should have the unit normal and unit tangent. Use them to easily find the unit binormal. How do you know that your result is a unit vector? &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q009. What difference would it make in the above results if the function was `R(t) = sin(t^2) `i + cos(t^2) `j + t `k? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: There would be chain rule to do in the deriviatives. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:ok ********************************************* Question: `q010. What difference would it make in the above results if the function was `R(t) = sin(t^2) `i + cos(t^2) `j + t^2 `k? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The z component would exist even in acceleration . confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique rating: ok " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: