course PHY 202 H????|`??vg?+?assignment #027
......!!!!!!!!...................................
14:05:24 Note that the solutions given here use k notation rather than epsilon0 notation. The k notation is more closely related to the geometry of Gauss' Law and is consistent with the notation used in the Introductory Problem Sets. However you can easily switch between the two notations, since k = 1 / (4 pi epsilon0), or alternatively epsilon0 = 1 / (4 pi k).
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:14:26 Query text problem 17.18 potential 2.5 * 10^-15 m from proton; PE of two protons at this separation in a nucleus. What is the electrostatic potential at a distance of 2.5 * 10^-15 meters?
......!!!!!!!!...................................
RESPONSE --> V= k(Q/r) V=9.0*10^9Nm^2/C^2 * (1.60*10^-19C) / (2.5*10^-15m) = 5.8*10^5V PE = qV = (1.60*10^-19C)(5.8*10^5V) = 9.2*10^-14J
.................................................
......!!!!!!!!...................................
14:49:28 STUDENT SOLUTION: For a part, to determine the electric potential a distance fo 2.5810^-15m away from a proton, I simply used the equation V = k q / r for electric potential for point charge: q = 1.60*10^-19C=charge on proton V = kq/r = 9.0*10^9N*m^2/C^2(1.60*10^-19C) / (2.5*10^-15m) = 5.8*10^5V. Part B was the more difficult portion of the problem. You have to consider a system that consists of two protons 2.5*10^-5m apart. The work done against the electric field to assemble these charges is W = qV. The potential energy is equal to the work done against the field. PE=(1.60*10^-19C)(5.8*10^5V) = 9.2*10^-14 J.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:49:34 query univ phy 23.58 (24.58 10th edition). Geiger counter: long central wire 145 microns radius, hollow cylinder radius 1.8 cm. What potential difference between the wire in the cylinder will produce an electric field of 20,000 volts/m at 1.2 cm from the wire?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:49:38 ** The voltage V_ab is obtained by integrating the electric field from the radius of the central wire to the outer radius. From this we determine that E = Vab / ln(b/a) * 1/r, where a is the inner radius and b the outer radius. If E = 20,000 V/m at r = 1.2 cm then Vab = E * r * ln(b/a) = 20,000 V/m * ln(1.8 cm / .0145 cm) * .012 m = 1157 V. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:49:44 Query univ 23.78 (24.72 10th edition). Rain drop radius .65 mm charge -1.2 pC. What is the potential at the surface of the rain drop?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
14:49:48 STUDENT RESPONSE FOLLOWED BY SOLUTION: The problem said that V was 0 at d = inifinity, which I understnad to mean that as we approach the raindrop from infinity, the potential differencegrows from 0, to some amount at the surface of the raindrop. Because water molecules are more positive on one side that the other, they tend to align in a certain direction. Since positive charges tend to drift toward negative charge, I would think that the raindrop, with its overall negative charge, has molecules arranged so that their more positive sides are pointing toward the center and negative sides will be alighed along the surface of the raindrop. Probably all wrong. I tried several differnet integrand configuraitons but never found one that gave me an answer in volts. SOLUTION: You will have charge Q = -1.2 * 10^-12 C on the surface of a sphere of radius .00065 m. The field is therefore E = k Q / r^2 = 9 * 10^9 N m^2 / C^2 * (-1.2 * 10^-12 C) / r^2 = -1.08 * 10^-2 N m^2 / C / r^2. Integrating the field from infinity to .00065 m we get (-1.08 * 10^-2 N m^2 / C) / (.00065 m) = -16.6 N m / C = -16.6 V. If two such drops merge they form a sphere with twice the volume and hence 2^(1/3) times the radius, and twice the charge. The surface potential is proportional to charge and inversely proportional to volume. So the surface potential will be 2 / 2^(1/3) = 2^(2/3) times as great as before. The surface potential is therefore 16.6 V * 2^(2/3) = -26.4 volts, approx.. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
"