#$&* course MTH 151 Introductory Question-Answer (qa) Sequence________________________________________
.............................................
Given Solution: 8 dollars / hour means '8 dollars per hour', indicating that for every hour you work you earn 8 dollars. If you work for 4 hours, then if you earn 8 dollars for every one of those hours you earn 4 * 8 dollars = 32 dollars. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): If you are sure your solution matches the given solution, and/or are sure you completely understand the given solution, then just type in 'OK'. Otherwise you should include a self-critique. In your self-critique you should explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution. Note that your instructor scans your document for questions and indications that you are having difficulty, usually beginning with your self-critique. If no self-critique is present, your instructor assumes you understand the solution to your satisfaction and do not need additional information or assistance. If you do not fully understand the given solution, and/or if you still have questions after reading and taking notes on the given solution, you should self-critique in the manner described in the preceding paragraph. Insert your 'OK' or your self-critique, as appropriate, starting in the next line: ------------------------------------------------ Self-critique Rating: Your self-critique rating should be entered on the line above, after the colon at the end of the prompt. Your self-critique rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. (If you believe your solution matches the given solution then just type in 'OK'. Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) ********************************************* Question: `q002. If you work 12 hours and earn $168, then at what rate, in dollars / hour, were you making money? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (type in your solution starting in the next line) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Your Confidence Rating should be entered on the line above, after the colon at the end of the prompt. Your Confidence Rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right)
.............................................
Given Solution: $168 earned in 12 hours implies that $168 / 12 = $14 were made per hour, so the rate is $14 / hour. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): If you are sure your solution matches the given solution, and/or are sure you completely understand the given solution, then just type in 'OK'. Otherwise you should include a self-critique. In your self-critique you should explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution. Note that your instructor scans your document for questions and indications that you are having difficulty, usually beginning with your self-critique. If no self-critique is present, your instructor assumes you understand the solution to your satisfaction and do not need additional information or assistance. If you do not fully understand the given solution, and/or if you still have questions after reading and taking notes on the given solution, you should self-critique in the manner described in the preceding paragraph. Insert your 'OK' or your self-critique, as appropriate, starting in the next line: ------------------------------------------------ Self-critique Rating: Your self-critique rating should be entered on the line above, after the colon at the end of the prompt. Your self-critique rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. (If you believe your solution matches the given solution then just type in 'OK'. Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) ________________________________________ ________________________________________ Here are the remaining ten questions: ********************************************* Question: `q003. If you are earning 8 dollars / hour, how long will it take you to earn $72? The answer may well be obvious, but explain as best you can how you reasoned out your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (type in your solution starting in the next line) If $8 is earned in one hour, then it will take 9 hours to earn a total of $72; since 72/8=9. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Your Confidence Rating should be entered on the line above, after the colon at the end of the prompt. Your Confidence Rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase)
.............................................
Given Solution: Many students simply know, at the level of common sense, that if we divide $72 by $8 / hour we get 9 hours, so 9 hours are required. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): If you are sure your solution matches the given solution, and/or are sure you completely understand the given solution, then just type in 'OK'. Otherwise you should include a self-critique. In your self-critique you should explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution. Note that your instructor scans your document for questions and indications that you are having difficulty, usually beginning with your self-critique. If no self-critique is present, your instructor assumes you understand the solution to your satisfaction and do not need additional information or assistance. If you do not fully understand the given solution, and/or if you still have questions after reading and taking notes on the given solution, you should self-critique in the manner described in the preceding paragraph. Insert your 'OK' or your self-critique, as appropriate, starting in the next line: OK ------------------------------------------------ Self-critique Rating: OK Your self-critique rating should be entered on the line above, after the colon at the end of the prompt. Your self-critique rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. (If you believe your solution matches the given solution then just type in 'OK'. Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) ********************************************* Question: `q004. Calculate (8 + 3) * 5 and 8 + 3 * 5, indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (type in your solution starting in the next line) (8 + 3) * 5 = (11) * 5 = 55 8 + 3 * 5 = 8 + 15 = 23 The answer to the first problem is 55 because, according to the order of operation rule, all work inside parentheses must be done first. The answer to the second problem is 23 because, if there are not parentheses, all multiplication and division should be done first in the order they appear, then all addition and subtraction work should be done in the order it appear. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Your Confidence Rating should be entered on the line above, after the colon at the end of the prompt. Your Confidence Rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right)
.............................................
Given Solution: (8 + 3) * 5 and 8 + 3 * 5 To evaluate (8 + 3) * 5, you will first do the calculation in parentheses. 8 + 3 = 11, so (8 + 3) * 5 = 11 * 5 = 55. To evaluate 8 + 3 * 5 you have to decide which operation to do first, 8 + 3 or 3 * 5. You should be familiar with the order of operations, which tells you that multiplication precedes addition. The first calculation to do is therefore 3 * 5, which is equal to 15. Thus 8 + 3 * 5 = 8 + 15 = 23 The results are different because the grouping in the first expression dictates that the addition be done first. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): If you are sure your solution matches the given solution, and/or are sure you completely understand the given solution, then just type in 'OK'. Otherwise you should include a self-critique. In your self-critique you should explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution. Note that your instructor scans your document for questions and indications that you are having difficulty, usually beginning with your self-critique. If no self-critique is present, your instructor assumes you understand the solution to your satisfaction and do not need additional information or assistance. If you do not fully understand the given solution, and/or if you still have questions after reading and taking notes on the given solution, you should self-critique in the manner described in the preceding paragraph. Insert your 'OK' or your self-critique, as appropriate, starting in the next line: OK ------------------------------------------------ Self-critique Rating: OK Your self-critique rating should be entered on the line above, after the colon at the end of the prompt. Your self-critique rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. (If you believe your solution matches the given solution then just type in 'OK'. Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) In subsequent problems the detailed instructions that accompanied the first four problems are missing. We assume you will know to follow the same instructions in answering the remaining questions. ********************************************* Question: `q005. Calculate (2^4) * 3 and 2^(4 * 3), indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. Note that the symbol '^' indicates raising to a power. For example, 4^3 means 4 raised to the third power, which is the same as 4 * 4 * 4 = 64. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (2^4) * 3 = (16) * 3 = 48 2^(4 * 3) = 2^(12) = 2^12 = 4096 The first answer is 48 because all work in parentheses must be done first, therefore, after finding the fourth power of 2, that number, 16, can be multiplied by 3. The second answer is 4096 since 4 *3 must be calculated first because it is within parentheses. The answer of that calculation, which is 12, can then be applied as 2^12, or 2 multiplied by 2 12 times, which gives the solution of 4096. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Your Confidence Rating should be entered on the line above, after the colon at the end of the prompt. Your Confidence Rating is a number from 0 to 3, which is to indicate your level of confidence in your solution. 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right)
.............................................
Given Solution: To evaluate (2^4) * 3 we first evaluate the grouped expression 2^4, which is the fourth power of 2, equal to 2 * 2 * 2 * 2 = 16. So we have (2^4) * 3 = 16 * 3 = 48. To evaluate 2^(4 * 3) we first do the operation inside the parentheses, obtaining 4 * 3 = 12. We therefore get 2^(4 * 3) = 2^12 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 4096. It is easy to multiply by 2, and the powers of 2 are important, so it's appropriate to have asked you to do this problem without using a calculator. Had the exponent been much higher, or had the calculation been, say, 3^12, the calculation would have become tedious and error-prone, and the calculator would have been recommended. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: `q006. Calculate 3 * 5 - 4 * 3 ^ 2 and 3 * 5 - (4 * 3)^2 according to the standard order of operations, indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3 * 5 4 * 3 ^ 2 = 3 * 5 4 * 9 = 15 36 = - 21 3 * 5 (4 * 3)^2 = 3 * 5 (12)^2 = 3 * 5 144 = 15 144 = - 129 The answer of -21 is reached by first calculating all exponents (3^2), followed by carrying out all multiplication and division as it appears, and finally by carrying out all addition and subtraction as it appears. By following all of the steps according to the order of operations, the solution is -21. The second answer is reached by first finding the answer to all work in parentheses (4 * 3), then my calculating all work involving exponents (12^2), then by completing all multiplication and division in order of appearance, then by completing all addition and subtraction in order of appearance. Therefore, the answer is -129. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To calculate 3 * 5 - 4 * 3 ^ 2, the first operation is the exponentiation operation ^. The two numbers involved in the exponentiation are 3 and 2; the 4 is 'attached' to the 3 by multiplication, and this multiplication can't be done until the exponentiation has been performed. The exponentiation operation is therefore 3^2 = 9, and the expression becomes 3 * 5 - 4 * 9. Evaluating this expression, the multiplications 3 * 5 and 4 * 9 must be performed before the subtraction. 3 * 5 = 15 and 4 * 9 = 36 so we now have 3 * 5 - 4 * 3 ^ 2 = 3 * 5 - 4 * 9 = 15 - 36 = -21. To calculate 3 * 5 - (4 * 3)^2 we first do the operation in parentheses, obtaining 4 * 3 = 12. Then we apply the exponentiation to get 12 ^2 = 144. Finally we multiply 3 * 5 to get 15. Putting this all together we get 3 * 5 - (4 * 3)^2 = 3 * 5 - 12^2 = 3 * 5 - 144 = 15 - 144 = -129. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK In the next three problems, the graphs will be of one of the basic shapes listed below. You will be asked to construct graphs for three simple functions, and determine which of the depicted graphs each of your graphs most closely resembles. At this point you won't be expected to know these terms or these graph shapes; if at some point in your course you are expected to know these things, they will be presented at that point. Linear: Quadratic or parabolic: Exponential: Odd power: Fractional positive power: Even negative power: partial graph of polynomial of degree 3 more extensive graph of polynomial of degree 3 ********************************************* Question: `q007. Let y = 2 x + 3. (Note: Liberal Arts Mathematics students are encouraged to do this problem, but are not required to do it). Evaluate y for x = -2. What is your result? In your solution explain the steps you took to get this result. Evaluate y for x values -1, 0, 1 and 2. Write out a copy of the table below. In your solution give the y values you obtained in your table. x y -2 -1 0 1 2 Sketch a graph of y vs. x on a set of coordinate axes resembling the one shown below. You may of course adjust the scale of the x or the y axis to best depict the shape of your graph. In your solution, describe your graph in words, and indicate which of the graphs depicted previously your graph most resembles. Explain why you chose the graph you did. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x y -2 -1 When we calculate y= 2(-2) + 3, we get y= -4 + 3 which ultimately gives us y= -1. -1 1 When x = -1 we can calculate 2(-1) + 3 to get 1 for y. 0 3 When x = 0 we can calculate 2(0) + 3, which is 0 + 3, which yields 3 for y. 1 5 When x = 1 we can calculate 2(1) + 3, which is 2 + 3, which gives us 5 = y. 2 7 When x = 2 we can calculate 2(2) + 3, which is 4 + 3, which gives us 7 = y. My graph formed a straight line which matches the linear solution above since this is the only solution containing a straight line. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Two slightly different explanations are give below, one by a student and one by the instructor. Neither format is inherently better than the other. GOOD SOLUTION BY STUDENT: First we need to complete the table. I have added a column to the right of the table to show the calculation of y when we us the x values as given. x y Calculation: If y = 2x + 3 -2 -1 If x = -2, then y = 2(-2)+3 = -4+3 = -1 -1 1 If x= -1, then y = 2(-1)+3 = -2+3 = 1 0 3 If x= 0, then y = 2(0)+3 = 0+3 = 3 1 5 If x= 1, then y = 2(1)+3 = 2+3 = 5 2 7 If x= 2, then y = 2(2)+3 = 4+3 = 7 Once an answer has been determined, the y value can be filled in. Now we have both the x and y values and we can begin our graph. The charted values continue on a straight line representing a linear function as shown above. INSTRUCTOR'S SOLUTION: We easily evaluate the expression: When x = -2, we get y = 2 x + 3 = 2 * (-2) + 3 = -4 + 3 = -1. When x = -1, we get y = 2 x + 3 = 2 * (-1) + 3 = -2 + 3 = 1. When x = 0, we get y = 2 x + 3 = 2 * (0) + 3 = 0 + 3 = 3. When x = 1, we get y = 2 x + 3 = 2 * (1) + 3 = 2 + 3 = 5. When x = 2, we get y = 2 x + 3 = 2 * (2) + 3 = 4 + 3 = 7. Filling in the table we have x y -2 -1 -1 1 0 3 1 5 2 7 When we graph these points we find that they lie along a straight line. Only one of the depicted graphs consists of a straight line, and we conclude that the appropriate graph is the one labeled 'linear'. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q008. Let y = x^2 + 3. (Note: Liberal Arts Mathematics students are encouraged to do this problem, but are not required to do it). Evaluate y for x = -2. What is your result? In your solution explain the steps you took to get this result. Evaluate y for x values -1, 0, 1 and 2. Write out a copy of the table below. In your solution give the y values you obtained in your table. x y -2 -1 0 1 2 Sketch a graph of y vs. x on a set of coordinate axes resembling the one shown below. You may of course adjust the scale of the x or the y axis to best depict the shape of your graph. In your solution, describe your graph in words, and indicate which of the graphs depicted previously your graph most resembles. Explain why you chose the graph you did. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If x = -2, then (-2)^2 + 3 = 4 + 3, which gives us 7 = y. If x = -1, then (-1)^2 + 3 = 1 + 4, which gives us 4 = y. If x = 0, then (0)^2 + 3 = 0 + 3, which gives us 3 = y. If x = 1, then (1)^2 + 3 = 1 + 4, which gives us 4 = y. If x= 2, then (2)^ 2+ 3 = 4 + 3, which gives us 7 = y. x y -2 7 -1 4 0 3 1 4 2 7 The graph shows a distinctive pattern and symmetry of points, yielding a downward curving raindrop shape. You fold the graph on the (0,3) point and both sides would lay exactly on top of the other. This matches the depiction of the quadratic/parabolic example. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Evaluating y = x^2 + 3 at the five points: If x = -2 then we obtain y = x^2 + 3 = (-2)^2 + 3 = 4 + 3 = 7. If x = -1 then we obtain y = x^2 + 3 = (-1)^2 + 3 = ` + 3 = 4. If x = 0 then we obtain y = x^2 + 3 = (0)^2 + 3 = 0 + 3 = 3. If x = 1 then we obtain y = x^2 + 3 = (1)^2 + 3 = 1 + 3 = 4. If x = 2 then we obtain y = x^2 + 3 = (2)^2 + 3 = 4 + 3 = 7. The table becomes x y -2 7 -1 4 0 3 1 4 2 7 We note that there is a symmetry to the y values. The lowest y value is 3, and whether we move up or down the y column from the value 3, we find the same numbers (i.e., if we move 1 space up from the value 3 the y value is 4, and if we move one space down we again encounter 4; if we move two spaces in either direction from the value 3, we find the value 7). A graph of y vs. x has its lowest point at (0, 3). If we move from this point, 1 unit to the right our graph rises 1 unit, to (1, 4), and if we move 1 unit to the left of our 'low point' the graph rises 1 unit, to (-1, 4). If we move 2 units to the right or the left from our 'low point', the graph rises 4 units, to (2, 7) on the right, and to (-2, 7) on the left. Thus as we move from our 'low point' the graph rises up, becoming increasingly steep, and the behavior is the same whether we move to the left or right of our 'low point'. This reflects the symmetry we observed in the table. So our graph will have a right-left symmetry. Two of the depicted graphs curve upward away from the 'low point'. One is the graph labeled 'quadratic or parabolic'. The other is the graph labeled 'partial graph of degree 3 polynomial'. If we look closely at these graphs, we find that only the first has the right-left symmetry, so the appropriate graph is the 'quadratic or parabolic' graph. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 2 ********************************************* Question: `q009. Let y = 2 ^ x + 3. (Note: Liberal Arts Mathematics students are encouraged to do this problem, but are not required to do it). Evaluate y for x = 1. What is your result? In your solution explain the steps you took to get this result. Evaluate y for x values 2, 3 and 4. Write out a copy of the table below. In your solution give the y values you obtained in your table. x y 1 2 3 4 Sketch a graph of y vs. x on a set of coordinate axes resembling the one shown below. You may of course adjust the scale of the x or the y axis to best depict the shape of your graph. In your solution, describe your graph in words, and indicate which of the graphs depicted previously your graph most resembles. Explain why you chose the graph you did. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: When x = 1, we calculate 2^1 + 3, which is 2 + 3, which gives us 5 = y. When x = 2, we calculate 2^2 + 3, which is 4 + 3, which gives us 7 = y. When x = 3, we calculate 2^3 + 3, which is 8 + 3, which gives us 11 = y. When x = 4, we calculate 2^4 + 3, which is 16 + 3, which gives us 19 = y. x y 1 5 2 7 3 11 4 19 My graph shows a line sloping upward from left to right, therefore increasing with each (x,y) point. Therefore, since the graph shows an increasing pattern that increases the rise greater and greater with each point, it makes sense to say this is an exponential graph. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Recall that the exponentiation in the expression 2^x + 1 must be done before, not after the addition. When x = 1 we obtain y = 2^1 + 3 = 2 + 3 = 5. When x = 2 we obtain y = 2^2 + 3 = 4 + 3 = 7. When x = 3 we obtain y = 2^3 + 3 = 8 + 3 = 11. When x = 4 we obtain y = 2^4 + 3 = 16 + 3 = 19. x y 1 5 2 7 3 11 4 19 Looking at the numbers in the y column we see that they increase as we go down the column, and that the increases get progressively larger. In fact if we look carefully we see that each increase is double the one before it, with increases of 2, then 4, then 8. When we graph these points we find that the graph rises as we go from left to right, and that it rises faster and faster. From our observations on the table we know that the graph in fact that the rise of the graph doubles with each step we take to the right. The only graph that increases from left to right, getting steeper and steeper with each step, is the graph labeled 'exponential'. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK #### I can see the difference between an exponential vs a linear graph as far as shape, but dont they both increase and have a rising slope? I am trying to understand the difference in more detail. ------------------------------------------------ Self-critique Rating: 2 ********************************************* Question: `q010. If you divide a certain positive number by 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If you divide any positive number by 1, the result will always be the same as the original number. This result can be achieved no matter the original positive number. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you divide any number by 1, the result is the same as the original number. Doesn't matter what the original number is, if you divide it by 1, you don't change it. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q011. If you divide a certain positive number by a number greater than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: No matter the original number, the result is always less. This is easy to see since whenever a number is divided by anything greater than one, it is being divided into portions. Each portion is of course greater than the whole. For example 10/2 = 5. 5 is always less than 10 since it is half of ten. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by another number is similar. The bigger the number you divide by, the less you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a number greater than 1, what you get has to be smaller than the original number. Again it doesn't matter what the original number is, as long as it's positive. Students will often reason from examples. For instance, the following reasoning might be offered: OK, let's say the original number is 36. Let's divide 36 be a few numbers and see what happens: 36/2 = 18. Now 3 is bigger than 2, and 36 / 3 = 12. The quotient got smaller. Now 4 is bigger than 3, and 36 / 4 = 9. The quotient got smaller again. Let's skip 5 because it doesn't divide evenly into 36. 36 / 6 = 4. Again we divided by a larger number and the quotient was smaller. I'm convinced. That is a pretty convincing argument, mainly because it is so consistent with our previous experience. In that sense it's a good argument. It's also useful, giving us a concrete example of how dividing by bigger and bigger numbers gives us smaller and smaller results. However specific examples, however convincing and however useful, don't actually prove anything. The argument given at the beginning of this solution is general, and applies to all positive numbers, not just the specific positive number chosen here. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q012. If you divide a certain positive number by a positive number less than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If you divide a positive number by a positive number less than 1, you will always get a result greater than the original number. This also goes back to dividing a positive number into equal parts, where the smaller of a number you divide by, say 0.5 vs 6, the greater your portions will be. An example is 10/0.5 = 20. This is because the positive 0.5 is less than one and therefore allows us to divide our whole into bigger parts. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by some other number is similar. The bigger the number you divide by, the less you get. The smaller the number you divide by, the more you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a positive number less than 1, what you get has to be larger than the original number. Again it doesn't matter what the original number is, as long as it's positive. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q013. Students often get the basic answers to nearly all, or even all these questions, correct. Your instructor has however never seen anyone who addressed all the subtleties in the given solutions in their self-critiques, and it is very common for a student to have given no self-critiques. It is very likely that there is something in the given solutions that is not expressed in your solution. This doesn't mean that you did a bad job. If you got most of the 'answers' right, you did fine. However, in order to better understand the process, you are asked here to go back and find something in one of the given solutions that you did not address in your solution, and insert a self-critique. You should choose something that isn't trivial to you--something you're not 100% sure you understand. If you can't find anything, you can indicate this below, and the instructor will point out something and request a response (the instructor will select something reasonable, but will then expect a very good and complete response). However it will probably be less work for you if you find something yourself. Your response should be inserted at the appropriate place in this document, and should be indicated by preceding it with ####. As an answer to this question, include a copy of whatever you inserted above, or an indication that you can't find anything. your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv #### I can see the difference between an exponential vs a linear graph as far as shape, but dont they both increase and have a rising slope? I am trying to understand the difference in more detail. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q013. Students often get the basic answers to nearly all, or even all these questions, correct. Your instructor has however never seen anyone who addressed all the subtleties in the given solutions in their self-critiques, and it is very common for a student to have given no self-critiques. It is very likely that there is something in the given solutions that is not expressed in your solution. This doesn't mean that you did a bad job. If you got most of the 'answers' right, you did fine. However, in order to better understand the process, you are asked here to go back and find something in one of the given solutions that you did not address in your solution, and insert a self-critique. You should choose something that isn't trivial to you--something you're not 100% sure you understand. If you can't find anything, you can indicate this below, and the instructor will point out something and request a response (the instructor will select something reasonable, but will then expect a very good and complete response). However it will probably be less work for you if you find something yourself. Your response should be inserted at the appropriate place in this document, and should be indicated by preceding it with ####. As an answer to this question, include a copy of whatever you inserted above, or an indication that you can't find anything. your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv #### I can see the difference between an exponential vs a linear graph as far as shape, but dont they both increase and have a rising slope? I am trying to understand the difference in more detail. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #(*!