course Mth 174 bzassignment #002
......!!!!!!!!...................................
15:46:11 Query Section 6.3 #8, ds / dt = -32 t + 100, s = 50 when t = 0
......!!!!!!!!...................................
RESPONSE --> ds/dt = -32 t + 100 s= -4.9t^2 + 100t + K 50 = -4.9(0)^2 + 100(0) + K 50 = K s= -4.9t^2 + 100t + 50
.................................................
......!!!!!!!!...................................
15:46:34 What is the solution satisfying the given initial condition?
......!!!!!!!!...................................
RESPONSE --> Yes because I plugged in 0 for t when s=50.
.................................................
......!!!!!!!!...................................
15:47:03 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> s= -4.9t^2 + 100t + K
.................................................
......!!!!!!!!...................................
15:56:03 How fast is the water balloon moving when it strikes the ground?
......!!!!!!!!...................................
RESPONSE --> v(t) = -32t+40 s(t)= -16t^2 + 40t + k 30= -16(0)2 + 40(0) + K 30=K s(t)= -16t^2 + 40t + 30 0= -16t^2 + 40t + 30 simplify: (4t + 6) (4t + 4)
.................................................
......!!!!!!!!...................................
15:57:50 How fast is the water balloon moving when it strikes the 6 ft person's head?
......!!!!!!!!...................................
RESPONSE --> v(t) = -32t+40 s(t)= -16t^2 + 40t + k 30= -16(0)2 + 40(0) + K 30=K s(t)= -16t^2 + 40t + 30 0= -16t^2 + 40t + 30 simplify: (4t + 6) (4t + 4) t=-1.5 sec t=-1 I would plug in t into v(t) = -32t+24 to find the speed when it strikes this person. I use 24 instead of 30 because you must subtract 6ft from 30ft. Again, I don't know which time to use but I understand how to plug it in.
.................................................
......!!!!!!!!...................................
15:59:36 What is the average velocity of the balloon between the two given clock times?
......!!!!!!!!...................................
RESPONSE --> v(t) = -32t+40 v(t)= -32(1.5) + 40 v= -8 v(t)=-32(3) + 40 v(t)=-56 (-8 + -56) / 2 = -32 = average velocity
.................................................
......!!!!!!!!...................................
16:00:00 What function describes the velocity of the balloon as a function of time?
......!!!!!!!!...................................
RESPONSE --> v(t) = -32t+40
.................................................
......!!!!!!!!...................................
16:03:52 Query Section 6.4 #19 (#18 3d edition) derivative of (int(ln(t)), t, x, 1)
......!!!!!!!!...................................
RESPONSE --> derivative of (int(ln(t)), t, x, 1) ln(1) - ln (x) = -lnx
.................................................
......!!!!!!!!...................................
16:03:57 What is the desired derivative?
......!!!!!!!!...................................
RESPONSE --> derivative of (int(ln(t)), t, x, 1) ln(1) - ln (x) = -lnx
.................................................
......!!!!!!!!...................................
16:04:48 The Second Fundamental Theorem applies to an integral whose upper limit is the variable with respect to which we take the derivative. How did you deal with the fact that the variable is the lower limit?
......!!!!!!!!...................................
RESPONSE --> I still plugged in the upper limit first and subtracted it from the lower limit plugged in to the equation.
.................................................
......!!!!!!!!...................................
16:05:33 Why do we use something besides x for the integrand?
......!!!!!!!!...................................
RESPONSE --> We use something besiedes x in order to be able to substitue both the upper and lower limit, rather than only the x value.
.................................................
......!!!!!!!!...................................
16:13:46 Query Section 6.4 #26 (3d edition #25) derivative of (int(e^-(t^2),t, 0,x^3)
......!!!!!!!!...................................
RESPONSE --> derivative of (int(e^-(t^2),t, 0,x^3) I don't understand what the last part of the problem means where you have t, 0,x^3. This problem in the book has an upper limit of 3 and a lower limit of cos(x) and this is what I got: e^(3^2) - e^(cos(x)^2) If you mean that 0 and x^3 are the limits then, e^((x^3)^2) - e^(0^2)
.................................................
......!!!!!!!!...................................
16:13:53 What is the desired derivative?
......!!!!!!!!...................................
RESPONSE --> derivative of (int(e^-(t^2),t, 0,x^3) I don't understand what the last part of the problem means where you have t, 0,x^3. This problem in the book has an upper limit of 3 and a lower limit of cos(x) and this is what I got: e^(3^2) - e^(cos(x)^2) If you mean that 0 and x^3 are the limits then, e^((x^3)^2) - e^(0^2)
.................................................
......!!!!!!!!...................................
16:18:00 How did you apply the Chain Rule to this problem?
......!!!!!!!!...................................
RESPONSE --> The chain rule could be applied by saying f(x)=e and t^2=g(x) and f ' (g(x)) * g (x) then, e * t^2 * 2t
.................................................
......!!!!!!!!...................................
16:18:39 Why was the Chain Rule necessary?
......!!!!!!!!...................................
RESPONSE --> I'm not sure but I don't think it is necessary when the function includes e
.................................................