course Mth 174 zXΒCӮassignment #004
......!!!!!!!!...................................
18:47:01 query problem 7.2.12 (3d edition #11) antiderivative of sin^2 x
......!!!!!!!!...................................
RESPONSE --> antiderivative of sin^2 x= integral sin(theta)sin(theta) = -sin(theta)cos(theta) - integral - cos(theta)cos(theta)= cos^2 = 1 + cosx so, integral sin(theta)sin(theta)= -sin(theta)cos(theta) + integral 1 + cos(theta) d(theta)= integral sin(theta)sin(theta)= -sin(theta)cos(theta) + integral 1 d(theta) + integral cos(theta) d (theta)= integral sin(theta)sin(theta)= -sin(theta)cos(theta) + theta - sin(theta) = -sin(theta)cos(theta) -(theta)sin(theta) + C
.................................................
......!!!!!!!!...................................
18:47:06 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> antiderivative of sin^2 x= integral sin(theta)sin(theta) = -sin(theta)cos(theta) - integral - cos(theta)cos(theta)= cos^2 = 1 + cosx so, integral sin(theta)sin(theta)= -sin(theta)cos(theta) + integral 1 + cos(theta) d(theta)= integral sin(theta)sin(theta)= -sin(theta)cos(theta) + integral 1 d(theta) + integral cos(theta) d (theta)= integral sin(theta)sin(theta)= -sin(theta)cos(theta) + theta - sin(theta) = -sin(theta)cos(theta) -(theta)sin(theta) + C
.................................................
......!!!!!!!!...................................
18:48:43 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> First I used f = sin(theta), f ' = cos(theta), g ' = sin(theta), g = -cos(theta) Then I substituted cos^2 = 1 + cosx so,
.................................................
......!!!!!!!!...................................
20:15:39 query problem 7.2.16 antiderivative of (t+2) `sqrt(2+3t)
......!!!!!!!!...................................
RESPONSE --> f= (2 + 3t)^^1/2 f ' = 1/2 (2 +3t)^ -1/2 g' = t + 2 g= 1/2 t^2 + 2t integral of (t+2) `sqrt(2+3t) dt = (2 + 3t)^1/2 * 1/2t^2 + 2t - integral of 1/2 (2 + 3t)^ -1/2 * t + 2 integral of (t+2) `sqrt(2+3t) dt = t^2 (2 + 3t)^1/2 - 1/2 integral of (2 + 3t)^ -1/2 * t dt + integral of 2 dt Now I solve for integral of (2 + 3t)^ -1/2 * t dt f= (2 + 3t)^ 1/2 f ' = 1/2 (2 + 3t)^ -1/2 g' = t g = 2t integral of (2 + 3t)^ -1/2 * t dt= (2 + 3t)^1/2 * 2t - integral of 1/2 (2 + 3t) ^ -1/2 * t + 2 = 2t (2 + 3t)^1/2 - integral of t(2 + 3t)^ -1/2 integral of (2 + 3t)^ -1/2 * t dt= integral of 2t dt Now I substitute: f = (2 + 3t) ^ -1/2 f' = -1/2 (2 + 3t) ^ -3/2 g' = t g= 2t integral of (2 + 3t)^ -1/2 * t dt = (2 + 3t)^ -1/2 * 2t - integral of -1/2(2 + 3t)^ -3/2 * 2t = 2t (2 + 3t) ^ - 1/2 + integral of t(2 + 3t) ^ -3/2 I can move the part on the right to the left and multiply both sides by (2 + 3t) in order to get the original function. integral of (2 + 3t)(2 + 3t)^ -3/2 t dt = 2t (2 + 3t)^ -1/2 (2 + 3t) =2t (2 + 3t) ^ 1/2 + integral of 2 dt =2t (2 + 3t) ^ 1/2 + 2t I put this back into the original function integral of (t+2) `sqrt(2+3t) dt = t^2 (2 + 3t)^1/2 - 1/2 * 2t (2 + 3t) ^ 1/2 + 2t = 3t - t^2(2 + 3t) + C
.................................................
......!!!!!!!!...................................
20:15:49 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> = 3t - t^2(2 + 3t) + C
.................................................
......!!!!!!!!...................................
20:15:53 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:38:18 query problem 7.2.27 antiderivative of x^5 cos(x^3)
......!!!!!!!!...................................
RESPONSE --> f = cosx^3 f' = -3sinx^3
.................................................
......!!!!!!!!...................................
20:39:15 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> 1/6x^6 * cosx^3 + 1/2 - 1/7x^7 * sinx^3 - 3/7 - x + C
.................................................
......!!!!!!!!...................................
20:39:19 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:43:55 query problem 7.2.52 (3d edition #50) f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1).
......!!!!!!!!...................................
RESPONSE --> I'm not sure how to calculate this since f is twice differentiable.
.................................................
......!!!!!!!!...................................
20:43:57 What is the value of the requested integral?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:44:00 How did you use integration by parts to obtain this result? Be specific.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:44:05 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:44:51 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> I think my main problem in integration by parts is knowing when to pull out a fraction and when to combine them.
.................................................