course Mth 174 |§ÎðªàÞÝÁæl¼¢òíÌþ¥¥Ÿe®ƒassignment #005
......!!!!!!!!...................................
11:08:05 Query problem 7.3.17 (3d edition #15) x^4 e^(3x)
......!!!!!!!!...................................
RESPONSE --> I thought this integral resembled III.14 in the table so I transformed part of it into a polynomial. I transformed x^4= (x + x^3) so integral of x^4 e^(3x)= integral of (x + x^3) e^(3x) = 1/3 [ (x + x^3) e^(ex) - 1/9(1 + 3x^2)e^(3x) + 1/27 (6x) - 1/81 (6)] + C
.................................................
......!!!!!!!!...................................
11:08:11 what it is your antiderivative?
......!!!!!!!!...................................
RESPONSE --> I thought this integral resembled III.14 in the table so I transformed part of it into a polynomial. I transformed x^4= (x + x^3) so integral of x^4 e^(3x)= integral of (x + x^3) e^(3x) = 1/3 [ (x + x^3) e^(ex) - 1/9(1 + 3x^2)e^(3x) + 1/27 (6x) - 1/81 (6)] + C
.................................................
......!!!!!!!!...................................
11:08:22 Which formula from the table did you use?
......!!!!!!!!...................................
RESPONSE --> III.14
.................................................
......!!!!!!!!...................................
11:09:33 You should have used formula 14. What was your value of a, what was p(x), how many derivatives did you use and what were your derivatives of p(x)?
......!!!!!!!!...................................
RESPONSE --> a = 3 p(x) = x + x^3 p '(x) = 1 + 3x^2 p ''(x)= 6x p '''(x)= 6
.................................................
......!!!!!!!!...................................
11:26:32 Query problem 7.3.33 (3d edition #30) 1 / [ 1 + (z+2)^2 ) ]
......!!!!!!!!...................................
RESPONSE --> This problem looks similar to V.26, so I transformed it: 1 + (z+2)^2= 1 + z^2 + 4z + 4 + 1= z^2 + 4z + 5= -(z + 5)(z - 1) so 1 / [ 1 + (z+2)^2 ) ] = 1/ [-(z + 5)(z - 1)] = -1/4 (lnI z - 5I - lnIz + 1I + C a= -5 b = -1
.................................................
......!!!!!!!!...................................
11:26:37 What is your integral?
......!!!!!!!!...................................
RESPONSE --> This problem looks similar to V.26, so I transformed it: 1 + (z+2)^2= 1 + z^2 + 4z + 4 + 1= z^2 + 4z + 5= -(z + 5)(z - 1) so 1 / [ 1 + (z+2)^2 ) ] = 1/ [-(z + 5)(z - 1)] = -1/4 (lnI z - 5I - lnIz + 1I + C a= -5 b = -1
.................................................
......!!!!!!!!...................................
11:26:56 Which formula from the table did you use and how did you get the integrand into the form of this formula?
......!!!!!!!!...................................
RESPONSE --> V.26 This problem looks similar to V.26, so I transformed it: 1 + (z+2)^2= 1 + z^2 + 4z + 4 + 1= z^2 + 4z + 5= -(z + 5)(z - 1) so
.................................................
......!!!!!!!!...................................
13:17:19 7.4.6 (#8 in 3d edition). Integrate 2y / ( y^3 - y^2 + y - 1)
......!!!!!!!!...................................
RESPONSE --> I have had some trouble figuring out this section. I couldn't figure out how to break down this denominator to make a partial fraction. Also I do not understand a step in the process in general. In the #10 class notes it explains another problem: This one is 1/[(x -3)(x +5)]. I understand this part of the notes: ""We know that when a fraction with denominator x-3 is added to a fraction with denominator x+5 we will obtain a fraction whose denominator is (x-3)(x+5). We conclude that it must be possible to express the given fraction as the sum A / (x-3) + B / (x+5), where A and B are numbers to be determined. Setting the original fraction equal to the sum we obtain an equation for A and B, as expressed in the third line. Multiplying both sides of the equation by (x-3) (x+5) we obtain the equation in the fourth line, which we rearrange to the form in the fifth line by collecting the x terms and the constant terms on the left-hand side and factoring." This part I do not understand: ""Since the right-hand side does not have an x term, we see that A + B = 0" How did you find that this equals 0?
.................................................
......!!!!!!!!...................................
13:17:22 What is your result?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
13:17:26 How did you factor your denominator to get the integrand into a form amenable to partial fractions?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
13:17:31 After the integrand was in the form 2y / [ (y-1) * (y^2 + 1) ], what form of partial fraction did you use?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
18:16:58 7.4.29 (3d edition #24). Integrate (z-1)/`sqrt(2z-z^2)
......!!!!!!!!...................................
RESPONSE --> First I complete the square and get 2z - z^2 = 1- (x-1)^2 Now I can substitute z-1= sinz or x = sinz + 1 and dz = cosz dz Integral (z-1)/`sqrt(2z-z^2)dz= integral (z-1)/ sqrt 1- (z - 1)^2 = [(sin(theta)/ (sqrt 1 - sin^2(theta)) ] cos(theta) d(theta) = integral [sin(theta)/ cos(theta)] cos(theta) d(theta) = integral sin(theta) d(theta) = integral sin(theta) + C Since z-1 = sin(theta), theta=arcsin(x - 1) + C
.................................................
......!!!!!!!!...................................
18:17:19 What did you get for your integral?
......!!!!!!!!...................................
RESPONSE --> arcsin(x - 1) + C
.................................................
......!!!!!!!!...................................
18:18:14 What substitution did you use?
......!!!!!!!!...................................
RESPONSE --> First I complete the square and get 2z - z^2 = 1- (x-1)^2 Then I can substitute z-1= sinz or x = sinz + 1 and dz = cosz dz
.................................................
......!!!!!!!!...................................
18:41:59 7.4.40 (3d edition #28). integrate (y+2) / (2y^2 + 3y + 1)
......!!!!!!!!...................................
RESPONSE --> First complete the square so (2y^2 + 3y + 1) = (2y + .5)^2 + (3/4)= (2y + .5)^2 + (sqrt 3/2)^2 x + .5= (sqrt3/2)tan(theta) dx= (sqrt3/2)(1/cos^2(theta) d(theta) so integral (y+2) / (2y^2 + 3y + 1)=integral [(y + 2)/ (2y + .5)^2 + (3/4)] * [ (sqrt 3/2) (1/cos^2(theta)] dtheta =(sqrt 3/2) integal (y + 2)/ ((3/4tan^29(theta) + 3/4))(1/cos^2(theta)) d(theta) = 2/sqrt 3 integral (y + 2)/ (tan^2(theta) + 1)(cos^2(theta) d(theta) = 2/sqrt 3 integral ( y + 2)/ in^2(theta) + cos^2(theta) d(theta) = 2/sqrt 3 integral (y + 2) d(theta) = (2/sqrt 3 )* y^2/2 + 2y(theta) + C theta = arctan((2/sqrt 3) + (1/sqrt3)) =(2/sqrt 3) * y^2/2 + 2y arctan((2/sqrt 3) + (1/sqrt3)) + C
.................................................
......!!!!!!!!...................................
18:42:02 What is your integral and how did you obtain it?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
18:42:54 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> I'm still pretty confused with the section. I'm going to read over it again and try a few more problems and send you my questions. Thanks!
.................................................