course Mth 174 ŕ]܇𗏐Zjassignment #013
......!!!!!!!!...................................
19:05:40 query problem 9.4.4 (9.3.6 3d edition). Using a comparison test determine whether the series sum(1/(3^n+1),n,1,infinity) converges.
......!!!!!!!!...................................
RESPONSE --> I compared 1/(3^n + 1) to 1/3^n, which converges as long as n > 1. If n > 1 then 1/(3^n + 1) < 1/3^n
.................................................
......!!!!!!!!...................................
19:07:10 With what known series did you compare this series, and how did you show that the comparison was valid?
......!!!!!!!!...................................
RESPONSE --> I compared 1/(3^n + 1) to 1/3^n. The limit of 1/3^n is 0
.................................................
......!!!!!!!!...................................
19:15:55 Query 9.4.10 3d edition 9.3.12). What is the radius of convergence of the series 1 / (2 n) ! and how did you use the ratio test to establish your result?
......!!!!!!!!...................................
RESPONSE --> ratio test = an+1/ an = limit as n>infinity of (1/(2n +1!)) / (1/2n!) = limit as n>infinity of 2n!/ 2n + 1! = limit as n>infinity of 1 / 2n! = 0 Limit = 0, so R = infinity
.................................................
......!!!!!!!!...................................
19:25:07 Query problem 9.4.40 (3d edition 9.3.18) (was 9.2.24) partial sums of 1-.1+.01-.001 ... o what does the series converge?
......!!!!!!!!...................................
RESPONSE --> an = (-1)^n (n +1) a(n +1) = (-1)^(n +1) (n +1) +1 In this case an > a(n + 1) so it converges
.................................................
......!!!!!!!!...................................
19:29:28 What are the first five partial sums of the series?
......!!!!!!!!...................................
RESPONSE --> S1 = 1 S2= S1 - 0.1 = 1 - 0.1 = .9 S3= S1 - S2 + .01 = 1 - .9 + .01 = .91 S4= S1 - S2 + S3 - .001 = 1 - .9 + .91 - .001 = .909 S5 = S1 - S2 + S3 - S4 + .0001 = 1 - .9 + .91 - .909 + .0001 = .9091
.................................................
......!!!!!!!!...................................
19:37:11 Query 9.5.6. What is your expression for the general term of the series p x + p(p-1) / 2! * x^2 + p(p-1)(p-2) * x^3 + ?
......!!!!!!!!...................................
RESPONSE --> (px^n) ( p -1) / n
.................................................
......!!!!!!!!...................................
19:49:18 Query 9.5.18. What is the radius of convergence of the series x / 3 + 2 x^2 / 5 + 3 x^2 / 7 + ?
......!!!!!!!!...................................
RESPONSE --> an = ((k + 1) (x^ n+1)) . (n + 2) an + 1 = ((k + 1)(x^ n + 2)) / (n + 3) ratio test = (an + 1 )/ an so: limit as n > infinity [((k + 1)(x^ n + 2)) / (n + 3)] / [((k + 1) (x^ n+1)) . (n + 2)] = limit as n > infinity[( k + 1) (x^n + 2) ( n + 2)]/ [( k + 1) (x ^n+1)(n + 3)] =limit as n > infinity (x^n+1) (n/3 + 2/3) = infinity Since the limit = infinity, R = 0
.................................................
......!!!!!!!!...................................
19:49:30 What is your expression for the general term of this series, and how did you use this expression to find the radius of convergence?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
19:59:34 Query 9.5.28 (3d edition 9.4.24). What is the radius of convergence of the series p x + p(p-1) / 2! * x^2 + p(p-1)(p-2) * x^3 + and how did you obtain your result?
......!!!!!!!!...................................
RESPONSE --> an = [(px^(n +1) (p - 1))/ (n + 1)] an+1= [ px^((n + 2) (p-1))/(n + 2)] ratio = an+ 1/ an so: limit as n > infinity of [ px^((n + 2) (p-1))/(n + 2)] / [(px^(n +1) (p - 1))/ (n + 1)] = limit as n > infinity of [px^(n + 2)(p-1)(n+1)]/ [px^(n+1) (p -1) (n + 2) = limit as n > infinity of [px^(n + 1)(p -1)]/ (n +1) = infinity The limit = infinity, so R = 0
.................................................
"