course Mth 174 ߃z½ÙzÛÝM{]ÌOzLÌs…á¥ÞzÏìY·”|ƒassignment #015
......!!!!!!!!...................................
17:28:33 Query 10.4.8 (was 10.4.6 3d edition) (was p. 487 problem 6) magnitude of error in estimating .5^(1/3) with a third-degree Taylor polynomial about 0.
......!!!!!!!!...................................
RESPONSE --> I En(.05^1/3) I = f(.05^1/3) - P3(.05^1/3) I < or equal to M/ (n + 1)! * I x - aI^n + 1 f(x) = .05^1/3 = .7937 f '(x)= 0 f ''(x)= 0 f '''(x) = 0 so, P3 = .05^1/3 = .7937 I En(.05^1/3) I = .7937 - .7937 < or equal to 1 / 4! * x^4 = 1 / 24 * (1/3)^4 = -.000541 How do you know what to put in for x for the right side of the inequality?
.................................................
......!!!!!!!!...................................
17:28:39 What error did you estimate?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:28:48 What function did you compute the Taylor polynomial of?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:29:13 What expression did you use in finding the error limit, and how did you use it?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:44:54 Query 10.4.20 (was 10.4.16 3d edition) (was p. 487 problem 12) Taylor series of sin(x) converges to sin(x) for all x (note change from cos(x) in previous edition)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:52:05 explain how you proved the result.
......!!!!!!!!...................................
RESPONSE --> sin(x) = x - x^3/3! + x^5/5! - x^7/7! +.......((-1) ^n/2 x^(n+2)) / (n+2)! En(x) = sin(x) - Pn(x) = sin(x) - sin(x) = x - x^3/3! + x^5/5! - x^7/7! +.......((-1) ^n/2 x^(n+2)) / (n+2)! sin(x) = x - x^3/3! +....((-1) ^n/2 x^(n+2)) / (n+2)! + En(x) En(x) = sin(x) - Pn(x) < or equal to x^(n + 1)/ (n + 1)! With any constant x as n increases the result gets closer and closer to 0 because each increase in n multiplies the result by a smaller fraction. This proves that the limit as n > infinity of sin(x) = 0, and therefore converges.
.................................................
......!!!!!!!!...................................
17:53:31 What is the error term for the degree n Taylor polynomial?
......!!!!!!!!...................................
RESPONSE --> The error is = f(x) - Pn(x)
.................................................
......!!!!!!!!...................................
17:53:47 Can you prove that the error term approaches 0 as n -> infinity?
......!!!!!!!!...................................
RESPONSE --> With any constant x as n increases the result gets closer and closer to 0 because each increase in n multiplies the result by a smaller fraction. This proves that the limit as n > infinity of sin(x) = 0, and therefore converges.
.................................................
......!!!!!!!!...................................
17:56:02 What do you know about M in the expression for the error term?
......!!!!!!!!...................................
RESPONSE --> M represents a positive constant that the function is bounded by for all positive values of x near 0. M/ (n + 1)! * (x - a) ^ (n+1) must be greater than the error.
.................................................
......!!!!!!!!...................................
17:59:32 How do you know that the error term must be < | x | ^ n / ( n+1)! ?
......!!!!!!!!...................................
RESPONSE --> When you integrate the following expression twice -M < or equal to En^ (n+1)(x) < or equal to M you get En(x) < or equal to M/ (x + 1)! x^(n + 1)
.................................................
......!!!!!!!!...................................
18:00:54 How you know that the limit of | x | ^ n / ( n+1)! is 0?
......!!!!!!!!...................................
RESPONSE --> The limit is 0 because as n increases for a number x the result decreases and approaches 0.
.................................................
......!!!!!!!!...................................
18:07:32 Query problem 10.3.10 (3d edition 10.3.12) (was 9.3.12) series for `sqrt(1+sin(`theta))
......!!!!!!!!...................................
RESPONSE --> I started with the sin(theta) series: sin(theta) = theta - theta^3/3! + theta^5/5! - theta^7/7! Then I added 1 1 + sin(theta) = 1 + theta - theta^3/3! + theta^5/5! - theta^7/7! Then I substituted theta^1/2 1 + theta^1/2 - (theta^1/2)^3/3! + (theta^1/2)^5/5! - (theta^1/2)^7/7!
.................................................
......!!!!!!!!...................................
18:07:50 what are the first four nonzero terms of the series?
......!!!!!!!!...................................
RESPONSE --> 1 + theta^1/2 - (theta^1/2)^3/3! + (theta^1/2)^5/5! - (theta^1/2)^7/7!
.................................................
......!!!!!!!!...................................
18:08:02 Explain how you obtained these terms.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
18:10:50 What is the Taylor series for `sqrt(z)?
......!!!!!!!!...................................
RESPONSE --> f (x) = sqrt (z) f(x) = z^1/2 f(x) = 1 + (x - 1)/2 - (x - 1)^2/8 + (x - 1)^3/16
.................................................
......!!!!!!!!...................................
18:11:04 What is the Taylor series for 1+sin(`theta)?
......!!!!!!!!...................................
RESPONSE --> I started with the sin(theta) series: sin(theta) = theta - theta^3/3! + theta^5/5! - theta^7/7! Then I added 1 1 + sin(theta) = 1 + theta - theta^3/3! + theta^5/5! - theta^7/7!
.................................................
......!!!!!!!!...................................
18:12:03 How are the two series combined to obtain the desired series?
......!!!!!!!!...................................
RESPONSE --> I wasn't sure how to substitute the sqrt(z) into the 1 + sin(theta) function
.................................................
......!!!!!!!!...................................
18:13:04 Query Add comments on any surprises or insights you experienced
......!!!!!!!!...................................
RESPONSE -->
.................................................
"