course Mth 174 „ɬçã•š·þ»¼”xWë…cÙÉ{êúâÐ쇫assignment #018
......!!!!!!!!...................................
14:44:00 Query problem 11.3.4 (was 10.3.6) Euler y' = x^3-y^3, (0,0), `dx = .2, 5 steps
......!!!!!!!!...................................
RESPONSE --> When x = 1.0, y = .9109. I found this by starting with point (0,0) and plugged in the x and y values in the equation and multiplied that by (1/5). I then added 1 to this number to give be the new y value. x= 0 y= 0 so 0^3 -0^3 * 1/5 = 0 x= .1 y = 0 so .1^3 - 0^3 * 1/5 = .0004 The new y value is 1 + .0004 = 1.0004 x = .2 y=1.0004 so .2^3 - 1.0004^3 = -.986 The new y value is 1 = -.986 = .8014 I repeated these steps until I reached x = 1.0
.................................................
......!!!!!!!!...................................
14:44:42 what is your estimate of y(1)?
......!!!!!!!!...................................
RESPONSE --> when x = 1.0, y = .9109
.................................................
......!!!!!!!!...................................
14:50:50 Describe how the given slope field is consistent with your step-by-step results.
......!!!!!!!!...................................
RESPONSE --> I made a graph and plugged in each x and y value and then drew a line corresponding to the slopes between each point. This graph was consistent with the slope field given because both are concave up and increasing.
.................................................
......!!!!!!!!...................................
14:51:39 Is your approximation an overestimate or an underestimate, and what property of the slope field allows you to answer this question?
......!!!!!!!!...................................
RESPONSE --> My approximation is an underestimation because the curve is concave up.
.................................................
......!!!!!!!!...................................
14:54:11 Query problem 11.3.10 (was 10.3.10) Euler and left Riemann sums, y' = f(x), y(0) = 0
......!!!!!!!!...................................
RESPONSE --> Using Euler's method gives the same results as using left Riemann sums because both find the area under the curves, and when the graph is concave down the left Riemann sums and Euler's method both underestimate, and when the graph is concave up they both overestimate.
.................................................
......!!!!!!!!...................................
14:54:16 explain why Euler's Method gives the same result as the left Riemann sum for the integral
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
15:21:48 Query problem 11.4.19 (3d edition 11.4.16) (was 10.4.10) dB/dt + 2B = 50, B(1) = 100
......!!!!!!!!...................................
RESPONSE --> dB/dt= 2B - 50 dB/dt = 2 (B - 25) dB/(B - 25) = 2dt integral of dB/(B - 25) = integral of 2dt = ln(B - 25) = 2t B - 25 = e^(2t + c) B - 25 = e^c e^2t B - 25 = B e^2t
.................................................
......!!!!!!!!...................................
15:21:50 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
15:22:23 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> B = B e^(2t + c)
.................................................
......!!!!!!!!...................................
15:23:29 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> I subtracted - 2B from the right side and factored out a 2. I then put dB/ B - 25 = 2 dt and integrated.
.................................................
......!!!!!!!!...................................
15:23:44 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE --> ln(B - 25) = 2t
.................................................
......!!!!!!!!...................................
15:31:33 Query problem 11.4.40 (3d edition 11.4.39) (was 10.4.30) t dx.dt = (1 + 2 ln t ) tan x, 1st quadrant
......!!!!!!!!...................................
RESPONSE --> t dx/dt = ( 1+ 2ln(t)) tanx dx/dt = ( 1+ 2ln(t)) tanx * t
.................................................
......!!!!!!!!...................................
15:31:40 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> tanx = B e^(t/2/2 + 2t)
.................................................
......!!!!!!!!...................................
15:32:00 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> tanx = e^(t^2/2 + 2t + c)
.................................................
......!!!!!!!!...................................
15:32:21 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> This is shown previously
.................................................
......!!!!!!!!...................................
15:32:30 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE --> Also shown previously
.................................................
......!!!!!!!!...................................
15:32:43 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................
"