course Mth 174 O}뉻۶ǝe|iassignment #021
......!!!!!!!!...................................
12:51:32 Query 11.9.7 (was page 576 #6) x' = x(1-y-x/3), y' = y(1-y/2-x)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
12:55:29 describe the phase plane, including nullclines, direction of solution trajectory in each region, and equilibrium points
......!!!!!!!!...................................
RESPONSE --> In the phaseplane, the horizontal nullclines are y = 0, y =2(1-x) and the vertical nullclines are x = 0, y = 1 - x/3. There are equilibrium points at (0,0), (0,2), (3,0). The first trajectory is when x is increasing and y is decreasing. The second is when both x and y are decreasing. The third is when both x nd y are increasing. The fourth is both x and y are decreasing.
.................................................
......!!!!!!!!...................................
12:55:32 describe the trajectories that result
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
13:01:35 Query problem 11.10.22 (3d edition 11.10.19) (was 10.8.10) d^2 x / dt^2 = - g / L * x
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
14:21:38 what is your solution assuming x(0) = 0 and x'(0) = v0?
......!!!!!!!!...................................
RESPONSE --> This one was a bit confussing for me but this is what I tried: d^2x/dt^2 = -g/l x = d^2s/dt^2 + g/l s = 0 w^2 = g/l w = sqrt (g/) s(t) = C1cos(wt) + C2 sin(wt) = C1 cos(9.8 / change in x *t) + C2sin(9.8 / change in x *t) v(0) = -wC1sin(w*0) + wC2 cos(w*0) = -9.8 / change in x C1 sin(9.8 / change in x*0) + 9.8 / change in x C2 cos(w*0) I wasn't sure what to do from here or if I set this up right.
.................................................
......!!!!!!!!...................................
14:21:54 What is your solution if the pendulum is released from rest at x = x0?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
14:34:45 Query problem 11.10.25 (3d edition 11.10.24) (was 10.8.18) LC circuit L = 36 henry, C = 9 farad
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
14:39:17 what is Q(t) if Q(0) = 0 and *(0) = 2?
......!!!!!!!!...................................
RESPONSE --> 36d^2Q/dt + Q/9 =0 Q(t) = C1cos(sqrt(Q/9)t) + C2sin(sqrt(Q/9)t) Q(0)=C1cos(sqrt(Q/9)*0) + C2sin(sqrt(Q/9)*0) LdI/dt + Q/C = 0 36dI/dt + Q/9 = 0 I'm not really sure what to do here. This section was confussing for me. I tried solving this problem like the example in the book, but I do not understand how to solve when you do not know what the value for Q is.
.................................................
......!!!!!!!!...................................
14:39:19 what is Q(t) if Q(0) = 6 and I(0) = 0?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
14:40:19 What differential equation did you solve and what was its general solution? And
......!!!!!!!!...................................
RESPONSE --> Q(t) = C1cos(sqrtQ/9)*t) + C2sin(sqrt(Q/9)*t)
.................................................
......!!!!!!!!...................................
15:02:22 Query problem 11.11.12 (was 10.9.12)general solution of P'' + 2 P' + P = 0
......!!!!!!!!...................................
RESPONSE --> P'' + 2 P' + P = 0 r^2 + br + c = 0 = r^2 + 2r + r = 0 r= + or - 1 b^2 - 4c = 0 so the general solution is: P(t) = (C1t + C2) e^-t
.................................................
......!!!!!!!!...................................
15:02:26 what is your general solution and how did you obtain it?
......!!!!!!!!...................................
RESPONSE --> P'' + 2 P' + P = 0 r^2 + br + c = 0 = r^2 + 2r + r = 0 r= + or - 1 b^2 - 4c = 0 so the general solution is: P(t) = (C1t + C2) e^-t
.................................................
......!!!!!!!!...................................
15:04:35 If not already explained, explain how the assumption that P = e^(rt) yields a quadratic equation.
......!!!!!!!!...................................
RESPONSE --> P = e^(rt) yields a quadratic equation because it satisfies a differentail equation in which the second derivatie d^2/dt^2 is a sum of multples of dy/dt and y.
.................................................
......!!!!!!!!...................................
15:05:53 Explain how the solution(s) to to your quadratic equation is(are) used to obtain your general solution.
......!!!!!!!!...................................
RESPONSE --> When you find the quadratic equation and what b and c equal, you must put it into the expression b^2 - 4c and compare it to 0. The general solution will differ depending on if the value is less than, greater than or equal to 0.
.................................................
......!!!!!!!!...................................
15:20:35 Query problem 11.11.36 (was 10.9.30) s'' + 6 s' + c s NO LONGER HERE. USE 11.11.30 s '' + b s ' - 16 s = 0
......!!!!!!!!...................................
RESPONSE --> b^2 - 4c is less than 0 b^2 + 64 is less than 0 b must be less than or = to -65
.................................................
......!!!!!!!!...................................
15:24:55 for what values of c is the general solution overdamped?
......!!!!!!!!...................................
RESPONSE --> b^2 - 4c is greater than 0 b^2 + 64 is greater than 0 b can be any number because any number squared is a positive number.
.................................................
......!!!!!!!!...................................
15:27:13 for what values of c is the general solution critically damped?
......!!!!!!!!...................................
RESPONSE --> b^2 - 4c = 0 b^2 + 64 = 0 I do not know how this one can be possible since 8^2 = 64
.................................................
......!!!!!!!!...................................
15:27:38 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................
"