course Mth 174 A am resending this assignment. |¦¡ªü…¸Ú¿ÑŒ }s£Íb¨Òóû¦»£‘©íassignment #006
......!!!!!!!!...................................
20:28:48 Query problem 7.5.13 (3d edition #10) graph concave DOWN and decreasing (note changes indicated by CAPS)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:30:17 list the approximations and their rules in order, from least to greatest
......!!!!!!!!...................................
RESPONSE --> RIGHT less than or equal to TRAP less than or equal to exact value greater than or equal to MID greater than or equal to LEFT
.................................................
......!!!!!!!!...................................
20:30:43 between which approximations does the actual integral lie?
......!!!!!!!!...................................
RESPONSE --> The actual integral lies between TRAP and MID
.................................................
......!!!!!!!!...................................
20:35:04 Explain your reasoning
......!!!!!!!!...................................
RESPONSE --> I found this because the graph is decreasing, therefore RIGHT(n) is less than or equal to exact value which is less than or equal to LEFT(n). The graph is concave down , so TRAP(n) is less than or equal to exact value is less than or equal to MID(n)
.................................................
......!!!!!!!!...................................
20:36:18 if you have not done so explain why when a function is concave down the trapezoidal rule UNDERestimates the integral
......!!!!!!!!...................................
RESPONSE --> This occurs because when the function is concave down the gragh curves under the trapezoid, so the total area is not calculated, therefore is underestimated.
.................................................
......!!!!!!!!...................................
20:38:55 if you have not done so explain why when a function is concave down the midpoint rule OVERrestimates the integral
......!!!!!!!!...................................
RESPONSE --> This occurs because the graph goes through the midpoint of the trapezoid, but when calculated the area exceeds the graph on the ends of the section.
.................................................
......!!!!!!!!...................................
20:39:39 Query NOTE: this problem has been left out of the new edition of the text, which is a real shame; you can skip on to the next problem (was problem 7.5.18) graph positive, decreasing, concave upward over interval 0 < x < h
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:39:40 Query NOTE: this problem has been left out of the new edition of the text, which is a real shame; you can skip on to the next problem (was problem 7.5.18) graph positive, decreasing, concave upward over interval 0 < x < h
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:39:48 why is the area of the trapezoid h (L1 + L2) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:39:50 Describe how you sketched the area E = h * f(0)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:39:52 Describe how you sketched the area F = h * f(h)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:39:54 Describe how you sketched the area R = h*f(h/2)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:39:57 Describe how you sketched the area C = h * [ f(0) + f(h) ] / 2
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:40:00 Describe how you sketched the area N = h/2 * [ f(0) + f(h/2) ] / 2 + h/2 * [ f(h/2) } f(h) ] / 2
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:40:03 why is C = ( E + F ) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:40:05 Why is N = ( R + C ) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:40:09 Is E or F the better approximation to the area?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:40:12 Is R or C the better approximation to the area?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:42:32 query problem 7.5.24 show trap(n) = left(n) + 1/2 ( f(b) - f(a) ) `dx
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:45:52 Explain why the equation must hold.
......!!!!!!!!...................................
RESPONSE --> Integral of TRAP from b to a= LEFT(n) + 1/2(f(b)-f(a)) This equation must hold because TRAP=[ LEFT(n) + RIGHT(n) ]/ 2 1/2(f(b)-f(a)) must = RIGHT(n)
.................................................
......!!!!!!!!...................................
20:50:33 In terms of a graph describe how trap(n) differs from left(n) and what this difference has to do with f(b) - f(a).
......!!!!!!!!...................................
RESPONSE --> You figure out left(n) by dividing the graph into sections, multiplying the width of each section by its left corner, or f(a) and then adding them all together by a Riemann sum. You figure out trap(n) by going through this same procedure to find left(n), then finding right(n) by multiplying the right corners, or f(b) to the widths and adding them together. Then you take the average of the left(n) and right(n).
.................................................
"