review assignment 2

course

I have looked through the orientation again and cannot find my posted assignments. Any suggestions? Thanks for your help.Obviously, I found the assignment in the send file and I hope I have sent the correct problems.

R.2.46 (was R.2.36) Evaluate for x = -2, and y = 3 the expression (2x - 3) / y and explan how you got your result.......!!!!!!!!...................................

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

RESPONSE -->

[ (2* -3) -3] / 3 = -2 1/3

confidence assessment: 3

.................................................

......!!!!!!!!...................................

17:15:13

** Starting with (2x-3)/y we substitute x=-2 and y=3 to get

(2*(-2) - 3)/3 =

(-4-3)/3=

-7/3. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:17:16

R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explan how you got your result.

......!!!!!!!!...................................

RESPONSE -->

( 4 *3 ) - (5 *2 ) = 2

confidence assessment: 3

.................................................

......!!!!!!!!...................................

17:17:31

** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get

| | 4*3 | - | 5*-2 | | =

| | 12 | - | -10 | | =

| 12-10 | =

| 2 | =

2. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:18:20

R.2.64 (was R.2.54) Explain what values, if any, must not be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)

......!!!!!!!!...................................

RESPONSE -->

zero is excluded from the domain.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

17:18:49

** The denominator of this expression cannot be zero, since division by zero is undefined.

Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 only if x^2 + 1 = 0 or x = 0.

Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:21:37

R.2.73 (was R.4.6). What is (-4)^-2 and how did you use the laws of exponents to get your result?

......!!!!!!!!...................................

RESPONSE -->

1/ -4 * -4 = 1/ 16

A^ -n = 1/a^n

confidence assessment: 3

.................................................

......!!!!!!!!...................................

17:21:50

**Since a^-b = 1 / (a^b), we have

(-4)^-2 = 1 / (-4)^2 = 1 / 16. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:26:32

Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?

......!!!!!!!!...................................

RESPONSE -->

25/81

I subtracted the exponents and multiplied the resulting values.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

17:26:49

** (3^(-2)*5^3)/(3^2*5). Grouping factors with like bases we have

3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get

3^(-2 -2) * 5^(3-1), which gives us

3^-4 * 5^2. Using a^(-b) = 1 / a^b we get

(1/3^4) * 5^2. Simplifying we have

(1/81) * 25 = 25/81. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2

.................................................

......!!!!!!!!...................................

17:50:18

R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

(5x^-2)^ -3 / (6y^ -2)^ -3 =( 5^ -3) / ( 6^ -3) *(y^ -3)

= (x^6/ 5^3)/ [ (y^6)/ (6^3) ]

= ( x^6/ 5^3) *[(6^3)/y^6)

=6^3x^6 / 5^3 y^6

confidence assessment: 2

.................................................

......!!!!!!!!...................................

17:50:41

[ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to

5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have

5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result

6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:54:39

Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

1/ (-8x^3)^2 = 1/ 64x^6

confidence assessment: 2

.................................................

......!!!!!!!!...................................

17:55:45

** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2

-1/(-8^2 * x^3+2)

1/64x^5

INSTRUCTOR COMMENT:1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote.

Also it's not x^3 * x^2, which would be x^5, but (x^3)^2.

There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation.

ONE CORRECT SOLUTION: (-8x^3)^-2 =

(-8)^-2*(x^3)^-2 =

1 / (-8)^2 * 1 / (x^3)^2 =

1/64 * 1/x^6 =

1 / (64 x^5).

Alternatively

(-8 x^3)^-2 =

1 / [ (-8 x^3)^2] =

1 / [ (-8)^2 (x^3)^2 ] =

1 / ( 64 x^6 ). **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

18:00:11

R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

x^ ( -2 -1) * y^(1-2) = x^ -3 * y^ -1=1/x^3y

confidence assessment: 2

.................................................

......!!!!!!!!...................................

18:00:28

** (1/x^2 * y) / (x * y^2)

= (1/x^2 * y) * 1 / (x * y^2)

= y * 1 / ( x^2 * x * y^2)

= y / (x^3 y^2)

= 1 / (x^3 y).

Alternatively, or as a check, you could use exponents on term as follows:

(x^-2y)/(xy^2)

= x^-2 * y * x^-1 * y^-2

= x^(-2 - 1) * y^(1 - 2)

= x^-3 y^-1

= 1 / (x^3 y).**

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

18:41:21

Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

[ (4 * 1/x^2)] * [ 1 / (yz)^ -1] / [ ( 25x^4) / y^5] =

[4/ (x^y^2)]* [y^5 / ( 25x^4)]=

[4 *y^5] /[25x^6y^2]

confidence assessment: 2

.................................................

......!!!!!!!!...................................

18:45:02

** Starting with

4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1:

4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression:

(4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents:

(4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further:

(4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents:

4z^4/ (25x^6 * y^3 ) **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2

.................................................

......!!!!!!!!...................................

18:46:00

R.2.122 (was R.4.72). Express 0.00421 in scientific notation.

......!!!!!!!!...................................

RESPONSE -->

4.21 *10^ -3

confidence assessment: 3

.................................................

......!!!!!!!!...................................

18:46:14

** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

18:46:45

R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.

......!!!!!!!!...................................

RESPONSE -->

9700

confidence assessment: 3

.................................................

......!!!!!!!!...................................

18:47:11

** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

18:51:17

R.2.150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?

......!!!!!!!!...................................

RESPONSE -->

97- 98.6= 1.6

1.6 is greater than 1.5 thus you are healthy.

100-98.6=1.4, which inplies you are not healthy.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

18:51:31

** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5.

But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or

| 1.4 | > 1.5, giving us

1.4>1.5, which is an untrue statement. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

&#

Very good work. Let me know if you have questions. &#