Assignment 8 R8

#$&*

course Mth 158

2/21 11pm

008. `* 8

*********************************************

Question: * R.8.12. Simplify the cube root of 54

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The cube root of 54 is equal to (2 * 3^3) * (1/3) or

3 * the cube root of 2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The cube root of 54 is expressed as 54^(1/3).

The number 54 factors into 2 * 3 * 3 * 3, i.e., 2 * 3^3. Thus

54^(1/3) = (2 * 3^3) ^(1/3)

= 2^(1/3) * (3^3)^(1/3)

= 2^(1/3) * 3^(3 * 1/3)

= 2^(1/3) * 3^1

= 3 * 2^(1/3), i.e.,

3 * cube root of 2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * R.8.18. Simplify the cube root of (3 x y^2 / (81 x^4 y^2) ).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First simplify radicand

[1/(27x^3)]* (1/3)

Now find the cube root

1/3x

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The cube root of (3 x y^2 / (81 x^4 y^2) ) is

(3 x y^2 / (81 x^4 y^2) ) ^ (1/3) =

(1 / (27 x^3) ) ^(1/3) =

1 / ( (27)^(1/3) * ^x^3^(1/3) ) =

1 / ( (3^3)^(1/3) * (x^3)^(1/3) ) =

1 / ( 3^(3 * 1/3) * x^(3 * 1/3) ) =

1 / (3 * x) =

1 / (3x).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok.

My answer are shorter through this assignment because I have a hard time describing how I’m working these type problems. I write it all down and show all the steps on paper, but I’m just not very sure of myself when it comes to using typewriter notation with these problems.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * R.8.30. Simplify 2 sqrt(12) - 3 sqrt(27).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Simplify the radicands

Sqrt (12) can be expressed as 2 * sqrt(3)

Sqrt (27) can be expressed as 3 * sqrt(3)

Now the problem can be expressed as

4 * sqrt (3) - 9 * sqrt (3)

Add like terms

-5 sqrt(3)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

2 sqrt(12) - 3 sqrt(27)

= 2 sqrt( 2*2*3) - 3 sqrt(3*3*3)

= 2 sqrt(2^2 * 3) - 3 sqrt(3^3)

= 2 sqrt(2^2) sqrt^3) - 3 sqrt(3^2) sqrt(3)

= (2 * 2 - 3 * 3) sqrt(3)

= (4 - 9) sqrt(3)

= -5 sqrt(3)

Extra Question: What is the simplified form of (2 sqrt(6) + 3) ( 3 sqrt(6)) and how did you get this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Use the distributive property

[(3*sqrt(6)) * (2*sqrt(6))] + [(3)(3*sqrt(6))]

Simplify

6 * 6 + 9sqrt(6)

36 + 9sqrt(6)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(2*sqrt(6) +3)(3*sqrt(6)) expands by the Distributive Law to give

(2*sqrt(6) * 3sqrt(6) + 3*3sqrt(6)), which we rewrite as

(2*3)(sqrt6*sqrt6) + 9 sqrt(6) =

(6*6) + 9sqrt(6) =

36 +9sqrt(6).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * R.8. Expand (sqrt(x) + sqrt(5) )^2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Use the distributive property to multiply the (sqrt(x) + sqrt(5)) by itself

X + sqrt(5)*sqrt(x) + sqrt(5)*sqrt(x) + 5

Add like terms

X + 2*sqrt(5)*sqrt(x) + 5

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(sqrt(x) + sqrt(5) )^2

= (sqrt(x) + sqrt(5) ) * (sqrt(x) + sqrt(5) )

= sqrt(x) * (sqrt(x) + sqrt(5) ) + sqrt(5) * (sqrt(x) + sqrt(5) )

= sqrt(x) * sqrt(x) + sqrt(x) * sqrt(5) + sqrt(5) * sqrt(x) + sqrt(5) * sqrt(5)

= x + 2 sqrt(x) sqrt(5) + 5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question:

* R.8.42. What do you get when you rationalize the denominator of 3 / sqrt(2) and what steps did you follow to get this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To rationalize the denominator multiply it and the numerator by the denominator

(3/sqrt(2)) * (sqrt(2)/sqrt(2))

(3sqrt(2)) / 2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Starting with 3/sqrt(2) we multiply numerator and denominator by sqrt(2) to get

(3*sqrt(2))/(sqrt(2)*sqrt(2)) =

(3 sqrt(2) ) /2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * R.8.48. Rationalize denominator of sqrt(2) / (sqrt(7) + 2)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To rationalize the denominator, multiply the expression by (sqrt(7)-2)/(sqrt(7)-2)

This gives us

[sqrt(2) * (sqrt(7)-2)]/[(sqrt(7)+2)(sqrt(7)-2)]

Simplify

[sqrt(2)*(sqrt(7)-2)]/3

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To rationalize the denominator sqrt(7) + 2 we multiply both numerator and denominator by sqrt(7) - 2.

We obtain

( sqrt(2) / (sqrt(7) + 2) ) * (sqrt(7) - 2) / (sqrt(7) - 2)

= sqrt(2) * (sqrt(7) - 2) / ( (sqrt(7) + 2) * ( sqrt(7) - 2) )

= sqrt(2) * (sqrt(7) - 2) / (sqrt(7) * sqrt(7) - 4)

= sqrt(2) * (sqrt(7) - 2 ) / (7 - 4)

= sqrt(2) * (sqrt(7) - 2 ) / 3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

Extra Question: What steps did you follow to simplify (x^3)^(1/6) and what is your result, assuming that x is positive and expressing your result with only positive exponents?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(x^3) ^(1/6)

X^ (1/2)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Express radicals as exponents and use the laws of exponents.

(x^3)^(1/6) =

x^(3 * 1/6) =

x^(1/2). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * R.8.60. Simplify 25^(3/2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

25^3/2

25 can be expressed as 5^2

5^(2*3/2)

5^3

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

25^(3/2) =

(5^2)^(3/2) =

5^(2 * 3/2) =

5^(2 * 3/2) =

5^3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * R.8.72. Simplify and express with only positive exponents:

(xy)^(1/4) (x^2 y^2) ^(1/2) / (x^2 y)^(3/4).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Break down the expression

X^(1/4) y^(1/4) xy / x^(3/2) y^(3/4)

Add the like terms

[X^(1 + ¼) y^(1 + ¼)] / x^(3/2) y^(3/4)

Calculate exponents

X^(5/4 - 3/2) y(5/4 - ¾)

X^(-1/4) y^(1/2)

The fully simplified expression reads

Y^(1/2)/x^(1/4)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(xy)^(1/4) (x^2 y^2) ^(1/2) / (x^2 y)^(3/4)

= x^(1/4) * y^(1/4) * (x^2)^(1/2) * y^2 ^ (1/2) / ( (x^2)^(3/4) * y^(3/4) )

= x^(1/4) * y^(1/4) * x^(2 * 1/2) * y^(2 * 1/2) / ( (x^(2 * 3/4) * y^(3/4) )

= x^(1/4) y^(1/4) * x^1 * y^1 / (x^(3/2) y^(3/4) )

= x^(1 + 1/4) y^(1 + 1/4) / (x^(3/2) y^(3/4) )

= x^(5/4) y^(5/4) / (x^(3/2) y^(3/4) )

= x^(5/4 - 3/2) y^(5/4 - 3/4)

= x^(5/4 - 6/4) y^(2/4)

= x^(-1/4) y^(1/2)

= y^(1/2) / x^(1/4).

STUDENT QUESTION

I wrote the entire given solution on paper to see how to solve, but I am still confused when it gets to the

= x^(1 + 1/4) y^(1 + 1/4) / (x^(3/2) y^(3/4)

How do you get 1 + ¼? Does the 1 come from the xy on the right of the numerator?

INSTRUCTOR RESPONSE

The numerator of the expression

x^(1/4) y^(1/4) * x^1 * y^1 / (x^(3/2) y^(3/4) )

contains two factors which are powers of x. The two are

x^(1/4) and x^1 (the latter could be written just as x, but to apply the laws of exponents it's not a bad idea to write the exponent explicitly).

When you multiply these two factors, the laws of exponent tell you that you get x^(1/4 + 1) = x^(5/4).

The same thing happens with the y factors.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * R.8.84. Express with positive exponents:

( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2), defined for -3 < x < 3.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

First we need to get rid of the negative exponent in the numerator, that gives us,

[(9-x^2)^(1/2) + x^2)/(9-x^2)^(1/2)]/(9-x^2)

Now to cancel the fraction in the numerator, we multiply by a fraction of 1 in the form of

[(9-x^2)^(1/2)]/[(9-x^2)^(1/2)]

The problem now reads

[(9-x^2)^(1/2)]/(9-x^2) + x^2/[(9-x^2)^(1/2) * (9-x^2)]

Now the first fraction can be simplified and like terms can be added in the second

(9-x^2)^(-1/2) + x^2/(9-x^2)^(3/2)

Get rid of the negative exponent

1/(9-x^2)^(1/2) + x^2/(9-x^2)^(3/2)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2) =

( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) / (9 - x^2) =

[ (9 - x^2) (1/2) / (9 - x^2)^1 ] + [ x^2 / ( (9 - x^2)^(1/2) * (9 - x^2)^ 1) ] =

(9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) =

1 / (9 - x^2)^(1/2) + x^2 / (9 - x^2)^(3/2).

In the third step the exponent ^1 on the (9 - x^2) expressions wasn't necessary, but was included to explicitly show the exponents and the application of the laws of exponents.

The first term in the 4th step is obtained as follows:

(9 - x^2) (1/2) / (9 - x^2)^1 = (9 - x^2) ^ (1/2 - 1) = (9 - x^2)^(-1/2).

EXPANDED EXPLANATION OF STEPS

( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2) =

( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) / (9 - x^2)

In the above step we have replace (9 - x^2) ^ (-1/2) in the numerator by (9 - x^2)^(1/2) in the denominator, following the rule that a^-b = 1 / (a^b) with a = (9 - x^2) and b = 1/2.

( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) / (9 - x^2) =

[ (9 - x^2) (1/2) / (9 - x^2)^1 ] + [ x^2 / ( (9 - x^2)^(1/2) * (9 - x^2)^ 1) ]

The above step is just the distributive law of multiplication over addition, in which we multiply through the expression ( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) by 1 / (9 - x^2). The brackets [ ] have been added to clarify the two terms in the resulting expression, but the expression has the same meaning without them.

[ (9 - x^2) (1/2) / (9 - x^2)^1 ] + [ x^2 / ( (9 - x^2)^(1/2) * (9 - x^2)^ 1) ] =

(9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2)

(9 - x^2) ^ (1/2) / (9 - x^2)^2 = (9 - x^2)^-1/2, by the laws of exponents; and (9 - x^2)^(1/2) * (9 - x^2) = (9 - x^2) ^(3/2) by the laws of exponents.

(9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) =

1 / (9 - x^2)^(1/2) + x^2 / (9 - x^2)^(3/2)

(9 - x^2) ^(-1/2) has been replaced by 1 / (9 - x^2) ^(1/2), using a^-b = 1 / a^b.

All the exponents in the final expression are positive.

It would also be possible to factor out 1 / (9 - x^2)^(1/2), though this wasn't requested and isn't necessary in the problem as stated. The result would be

1 / (9 - x^2)^(1/2) * ( 1 + x^2 / (9 - x^2) ).

This could be further simplified to

1 / (9 - x^2)^(1/2) * ( 9 / (9 - x^2) ) , which is equal to

9 / (9 - x^2)^(3/2)

You aren't expected to be able to read these expressions. You are expected to be able to write them out in standard form; having done so you should understand.

However these expressions are fairly challenging, so some of the expressions will be depicted here

( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2) would be depicted in standard notation as

(9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) would be depicted in standard notation as

1 / (9 - x^2)^(1/2) + x^2 / (9 - x^2)^(3/2) would be depicted in standard notation as

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

I’m not going to lie, this problem challenged me on a new level. I had to study this very closely before understanding.

------------------------------------------------

Self-critique Rating:3

@&

This is a challenging problem.

*@

*********************************************

Question: * R.8.108. v = sqrt(64 h + v0^2); find v for init vel 0 height 4 ft; for init vel 0 and ht 16 ft; for init vel 4 ft / s and height 2 ft.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Plug in the numbers

V= sqrt(64*4)

V= sqrt(256)

V= 16

V= sqrt(64*16)

V= sqrt(1024)

V= 32

V= sqrt(64*2 + 4^2)

V= sqrt(144)

V= 12

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If initial velocity is 0 and height is 4 ft then we substitute v0 = 0 and h = 4 to obtain

v = sqrt(64 * 4 + 0^2) = sqrt(256) =16.

If initial velocity is 0 and height is 16 ft then we substitute v0 = 0 and h = 4 to obtain

v = sqrt(64 * 16 + 0^2) = sqrt(1024) = 32.

Note that 4 times the height results in only double the velocity.

If initial velocity is 4 ft / s and height is 2 ft then we substitute v0 = 4 and h = 2 to obtain

v = sqrt(64 * 2 + 4^2) = sqrt(144) =12.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

Extra Question: What is the simplified form of (24)^(1/3) and how did you get this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

24^(1/3)

Reduce to (8*3)^(1/3)

8^1/3 is the equivalent to 2

So, the simplified form is

2*3^(1/3)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * (24)^(1/3) =

(8 * 3)^(1/3) =

8^(1/3) * 3^(1/3) =

2 * 3^(1/3) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question:

Extra Question: What is the simplified form of (x^2 y)^(1/3) * (125 x^3)^(1/3) / ( 8 x^3 y^4)^(1/3) and how did you get this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First simplify the components in the expression

[x^(2/3)y^(1/3)] * (5x)/[8^(1/3)xy(y^(1/3))]

The y^(1/3) cancel out, leaving

X^(2/3)* (5x)/ (2xy)

Combine like terms

[5x^(5/3)] / 2y

Simplify

[5x^(2/3)] / (2y)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * (x^2y)^(1/3) * (125x^3)^(1/3)/ ( 8 x^3y^4)^(1/3)

(x^(2/3)y^(1/3)* (5x)/[ 8^(1/3) * xy(y^(1/3)]

(x^(2/3)(5x) / ( 2 xy)

5( x^(5/3)) / ( 2 xy)

5x(x^(2/3)) / ( 2 xy)

5 ( x^(2/3) ) / (2 y) **

Self-critique (if necessary)ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: Extra question. What is the simplified form of sqrt( 4 ( x+4)^2 ) and how did you get this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Sqrt(4 *(x+4)^2) simplifies to

2 * |x + 4|

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We use two ideas in this solution:

sqrt(a b) = sqrt(a) * sqrt(b) and

sqrt(x^2) = | x |

To understand why sqrt(x^2) = | x | and not just x consider the following:

Let x = 5. Then sqrt(x^2) = sqrt( 5^2 ) = sqrt(25) = 5, so sqrt(x^2) = x.

It is also clear that in this case, | x | = | 5 | = 5, so | x | = x, and we can say that sqrt(x^2) = | x |.

Now let x = -5. We get sqrt(x^2) = sqrt( (-5)^2 ) = sqrt(25) = 5.

In this case sqrt(x^2) = 5 but x is not equal to 5, so sqrt(x^2) is not x.

However, in this case | x | = | -5 | = 5, so it is the case the sqrt(x^2) = | x |.

Using these ideas we get

sqrt( 4 ( x+4)^2 ) = sqrt(4) * sqrt( (x+4)^2 ) = 2 * | x+4 | **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

* Add comments on any surprises or insights you experienced as a result of this assignment.

This assignment took me longer than normal. I have been under the weather recently and unexpectedly had to take on some extra hours at work this week. Other than that, this particular assignment was tedious but not all that difficult.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

* Add comments on any surprises or insights you experienced as a result of this assignment.

This assignment took me longer than normal. I have been under the weather recently and unexpectedly had to take on some extra hours at work this week. Other than that, this particular assignment was tedious but not all that difficult.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#