Assignment 13 15

#$&*

course Mth 158

3/5 9:30 pm

013. `* 13

*********************************************

Question: * 1.5.34 (was 1.5.24). How did you write the interval [0, 1) using an inequality with x? Describe your illustration using the number line.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Because of the bracket, there would be a filled dot on zero, and and filled line up to 1, upon which, because of the parentheses, a unfilled dot over the 1

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * My notes here show the half-closed interval [0, 1).

When sketching the graph you would use a filled dot at x = 0 and an unfilled dot at x = 1, and you would fill in the line from x = 0 to x = 1. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.40 (was 1.5.30). How did you fill in the blank for 'if x < -4 then x + 4 ____ 0'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If x < -4 then x + 4 will always be < 0

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x<-4 then x cannot be -4 and x+4 < 0.

Algebraically, adding 4 to both sides of x < -4 gives us x + 4 < 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.46 (was 1.5.36). How did you fill in the blank for 'if x > -2 then -4x ____ 8'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If x > -2, we multiply each side by -4, we get -4x < 8

Anytime you multiply an inequality by a negative number you must switch the sign

So -4x < 8

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x> -2 then if we multiply both sides by -4 we get

-4x <8.

Recall that the inequality sign has to reverse if you multiply or divide by a negative quantity. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.58 (was 1.5.48). Explain how you solved the inquality 2x + 5 >= 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Solve for x

Subtract 5 from both sides

2x >= -4

Divide each side by 2

X >= -2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

2x+5>= 1 we add -5 to both sides to get

2x>= -4, the divide both sides by 2 to get the solution

x >= -2. **

Self-critique (if necessary)ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.64 (was 1.5.54). Explain how you solved the inquality 8 - 4(2-x) <= 2x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Use the distributive property

8 - 8 + 4x <= 2x

Subtract 4x from both sides

8 - 8 <= -2x

0 <= -2x

Divide each side by -2

0 <= x

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * 8- 4(2-x)<= 2x. Using the distributive law:

8-8+4x<= 2x . Simplifying:

4x<=2x . Subtracting 2x from both sides:

2x<=0. Multiplying both sides by 1/2 we get

x<=-0 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.76 (was 1.5.66). Explain how you solved the inquality 0 < 1 - 1/3 x < 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Solve the inequality as 2 inequalities

0 < 1 - 1/3x and 1 - 1/3x < 1

Solve both equations for x

0 < 1 - 1/3x

Subtract 1 from both sides

-1 < -1/3x

Multiply each side by -3

3 < x (the sign reverses when multiplied by a negative)

1 - 1/3x < 1

Subtract 1 from both sides

-1/3x < 0

Multiply each side by -3

x > 0

therefore, the solution is

0 < x < 3

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

0<1- 1/3x<1 we can separate this into two inequalities, both of which must hold:

0< 1- 1/3x and 1- 1/3x < 1. Subtracting 1 from both sides we get

-1< -1/3x and -1/3x < 0. We solve these inequalitites separately:

-1 < -1/3 x can be multiplied by -3 to get 3 > x (multiplication by the negative reverses the direction of the inequality)

-1/3 x < 0 can be multiplied by -3 to get x > 0.

So our inequality can be written 3 > x > 0. This is not incorrect but we usually write such inequalities from left to right, as they would be seen on a number line. The same inequality is expressed as

0 < x < 3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.94 (was 1.5.84). Explain how you found a and b for the conditions 'if -3 < x < 3 then a < 1 - 2x < b.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this expression for a and b, perform all the operations on all three parts to make the middle part of the inequality

First multiply each part by -2

6 > -2x > -6

Add 1 to each side

7 > 1 - 2x > -5

Or

-5 < 1 - 2x < 7

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Adding 1 to each expression gives us

1 + 6 > 1 - 2x > 1 - 6, which we simplify to get

7 > 1 - 2x > -5. Writing in the more traditional 'left-toright' order:

-5 < 1 - 2x < 7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.106 (was 1.5.96). Explain how you set up and solved an inequality for the problem. Include your inequality and the reasoning you used to develop the inequality. Problem (note that this statement is for instructor reference; the full statement was in your text) commision $25 + 40% of excess over owner cost; range is $70 to $300 over owner cost. What is range of commission on a sale?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X represents the owner cost

The range $70 to $300, makes the inequality

70 < x < 300

Multiply each part by .40

28 < .40x < 120

Add 25 to each part

53 < 25 + .40x < 145

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * If x = owner cost then

70 < x < 300.

.40 * owner cost is then in the range

.40 * 70 < .40 x < .40 * 300 and $25 + 40% of owner cost is in the range

25 + .40 * 70 < 25 + .40 x < 25 + .40 * 300 or

25 + 28 < 25 + .40 x < 25 + 120 or

53 < 25 + .40 x < 145. *

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.123 \ 112. Why does the inequality x^2 + 1 < -5 have no solution

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Subtract 1 from both sides

X^2 < -6

X < sqrt(-6)

It is impossible to get the square root of a negative number

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: x^2 +1 < -5

x^2 < -4

x < sqrt -4

can't take the sqrt of a negative number

INSTRUCTOR COMMENT: Good.

Alternative: As soon as you got to the step x^2 < -4 you could have stated that there is no such x, since a square can't be negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good responses. Let me know if you have questions. &#