#$&* course Mth158 3-27 7pm 018. `* 18
.............................................
Given Solution: * * STUDENT SOLUTION: (-3,2) slope 4/3. Move 3 units in the x direction, 4 in the y direction to get ((-3+3), (2+4)), which simplifies to (0,6) (-3,2) slope 4/3 = -4/-3 so move -3 units in the x direction and -4 in the y direction to get ((-3-3), (2-4)) which simplifies to (-6,-2) From (0,6) with slope 4/3 we move 4 units in the y direction and 3 in the x direction to get ((0+3), (6+4)), which simplifies to (3,10). The three points I obtained are (-6,-2), (0,6), (3,10). * 2.3.40 / 36 (was 2.3.30). Line thru (-1,1) and (2,2) **** Give the equation of the line and explain how you found the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: First find the slope of the line Using the slope formula, m = (y^2 - y^1)/(x^2 - x^1) This give us the slope 1/3 Now we use the point slope equation- y - y^1 = m(x - x^1), using slope 1/3 and point (-1,1) and solve for y This give us the equation Y = 1/3 x + 4/3 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * STUDENT SOLUTION: The slope is m = (y2 - y1) / (x2 - x1) = (2-1)/(2- -1) = 1/3. Point-slope form gives us y - y1 = m (x - x1); using m = 1/3 and (x1, y1) = (-1, 1) we get y-1=1/3(x+1), which can be solved for y to obtain y = 1/3 x + 4/3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: * 2.3.54 / 46 (was 2.3.40). x-int -4, y-int 4 * * ** What is the equation of the line through the given points and how did you find the equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The two points are (0, 4) and (-4, 0) You can find the equation of the line using slope intercept form Y = mx + b, b representing the y intercept So we have Y = -x + 4 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * STUDENT SOLUTION: The two points are (0, 4) and (4, 0). The slope is therefore m=rise / run = (4-0)/(0+4) = 1. The slope-intercept form is therefore y = m x + b = 1 x + 4, simplifying to y=x+4. STUDENT QUESTION I obtained -x + y = 4 or y = x + 4. I followed the example in the book which leaves 2 solutions (example problem 2.3.51) Did I do it correctly? INSTRUCTOR RESPONSE Both your solutions represent the same line, and both are correct. y = 1x + 4 means the same thing as y = x + 4; we rearrange this to -x + y = 4 (just subtract x from both sides). • -x + y = 4 is a 'standard form' of the equation of this line. • y = x + 4 is the 'slope-intercept' form of the equation. You don't need to know this, but still another 'standard form' is obtained by subtracting 4 from both sides of the equation -x + y = 4, giving us -x + y - 4 = 0. In this form we often want the coefficient of x to be positive, so we multiply both sides by -1 to get x - y + 4 = 0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I felt very confident about my answer, but in the given solution, the x intercept is listed as (4, 0) when in the question it states that the x intercept is -4…my solution is based on the x intercept being -4. ------------------------------------------------ Self-critique Rating:3
.............................................
Given Solution: * * the y intercept occurs where x = 0, which happens when y = 2 (0) + 1/2 or y = 1/2. So the y-intercept is (0, 1/2). The slope is m = 2.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: * 2.3.62 / 22 (was 2.4.18) Parallel to x - 2 y = -5 containing (0,0) **** Give your equation for the requested line and explain how you obtained it. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Solve x - 2y = -5 for y Y= ½ x + 5/2 So the line parallel to this line will have a slope of ½ We can use point slope form with the given point (0, 0) to get the equation Y - 0 = ½(x - 0) or Y = 1/2x confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The equation x - 2y = -5 can be solved for y to give us y = 1/2 x + 5/2. A line parallel to this will therefore have slope 1/2. Point-slope form gives us y - 0 = 1/2 * (x - 0) or just y = 1/2 x. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: * 2.3.68 / 28 (was 2.4.24) Perpendicular to x - 2 y = -5 containing (0,4) **** Give your equation for the requested line and explain how you obtained it. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Solve the equation for y to get slope intercept form Y = 1/2x + 5/2 Lines perpendicular to each other will have slopes that multiply to reach a product of -1 So the slope of this line will be -2 With the slope of the second line and the given point (0, 4), we can use point slope form to get our equation Y - 4 = -2(x - 0) Solve for y Y -4 = -2x Y= -2x + 4 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The equation x - 2y = -5 can be solved for y to give us y = 1/2 x + 5/2. A line perpendicular to this will therefore have slope -2/1 = -2. Point-slope form gives us y - 4 = -2 * (x - 0) or y = -2 x + 4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: * 2.3.68 / 28 (was 2.4.24) Perpendicular to x - 2 y = -5 containing (0,4) **** Give your equation for the requested line and explain how you obtained it. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Solve the equation for y to get slope intercept form Y = 1/2x + 5/2 Lines perpendicular to each other will have slopes that multiply to reach a product of -1 So the slope of this line will be -2 With the slope of the second line and the given point (0, 4), we can use point slope form to get our equation Y - 4 = -2(x - 0) Solve for y Y -4 = -2x Y= -2x + 4 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The equation x - 2y = -5 can be solved for y to give us y = 1/2 x + 5/2. A line perpendicular to this will therefore have slope -2/1 = -2. Point-slope form gives us y - 4 = -2 * (x - 0) or y = -2 x + 4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:3 #*&!