.................................................
......!!!!!!!!...................................
20:19:58 ** Starting with (2x-3)/y we substitute x=-2 and y=3 to get (2*(-2) - 3)/3 = (-4-3)/3= -7/3. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:24:10 query R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explan how you got your result.
......!!!!!!!!...................................
RESPONSE --> I 4(3)I - I 5(-2) I = I12I - I-10I = 12-10=2 Not sure how to type in absolute value signs but you get the idea.
.................................................
......!!!!!!!!...................................
20:24:25 ** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get | | 4*3 | - | 5*-2 | | = | | 12 | - | -10 | | = | 12-10 | = | 2 | = 2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:27:47 query R.2.64 (was R.2.54) Explain what values, if any, must not be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)
......!!!!!!!!...................................
RESPONSE --> (-9x^2 -x +1) / (x^3 +x) = -9x^2 - x -1 / x(x^2+1) denom factors to x(x+1)(x+1) -9x^2 -x +1 / x(x+1)(x+1) x=0 and x=-1 cannot be in domain
.................................................
......!!!!!!!!...................................
20:30:42 ** The denominator of this expression cannot be zero, since division by zero is undefined. Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 only if x^2 + 1 = 0 or x = 0. Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **
......!!!!!!!!...................................
RESPONSE --> Why isn't x=-1 included? Isn't x^2 + 1 a perfect square?
.................................................
......!!!!!!!!...................................
20:31:59 query R.2.73 (was R.4.6). What is (-4)^-2 and how did you use the laws of exponents to get your result?
......!!!!!!!!...................................
RESPONSE --> (-4)^2 = 16 -4 * -4 = 16
.................................................
......!!!!!!!!...................................
20:33:35 **Since a^-b = 1 / (a^b), we have (-4)^-2 = 1 / (-4)^2 = 1 / 16. **
......!!!!!!!!...................................
RESPONSE --> The exponent in that problem isn't negative.
.................................................
......!!!!!!!!...................................
20:38:28 query Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?
......!!!!!!!!...................................
RESPONSE --> 3^-2 * 5^2 / 3^2 *5 = 3^-2/3^2 * 5^2/5 = 3^-2-2 * 5^2-1 3^-4 * 5^2 = a^-n = 1/a^-n 5^2 = 25 and 3^4 = 81 25/81
.................................................
......!!!!!!!!...................................
20:39:27 ** (3^(-2)*5^3)/(3^2*5). Grouping factors with like bases we have 3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get 3^(-2 -2) * 5^(3-1), which gives us 3^-4 * 5^2. Using a^(-b) = 1 / a^b we get (1/3^4) * 5^2. Simplifying we have (1/81) * 25 = 25/81. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
20:51:35 query R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> using the laws (a^m)^n = (a)^m*n and a^-n= 1/a^n (5x^-3)^-3 / (6y^-2)^-3 = 125x^6 / 6^-3y^6 = 125x^6 / 1/216y^6 = 216y^6/125x^6
.................................................
......!!!!!!!!...................................
20:56:24 query Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. So I need to flip the 6 into a postive in the numerator. Is that correct?
.................................................
......!!!!!!!!...................................
21:03:37 ** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2 -1/(-8^2 * x^3+2) 1/64x^5 INSTRUCTOR COMMENT:1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote. Also it's not x^3 * x^2, which would be x^5, but (x^3)^2. There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation. ONE CORRECT SOLUTION: (-8x^3)^-2 = (-8)^-2*(x^3)^-2 = 1 / (-8)^2 * 1 / (x^3)^2 = 1/64 * 1/x^6 = 1 / (64 x^5). Alternatively (-8 x^3)^-2 = 1 / [ (-8 x^3)^2] = 1 / [ (-8)^2 (x^3)^2 ] = 1 / ( 64 x^6 ). **
......!!!!!!!!...................................
RESPONSE --> I was responding to the previous question. I hadn't even gotten to this problem yet. Apparently I clicked too soon. I am trying to backtrack to the question posed here.
.................................................
......!!!!!!!!...................................
21:06:26 query R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> x^-2y / xy^2 = x^(-2-1) / x * y^(1-2) / y = x^-3 * y^-1 using a^-n=1/a^n = 1/x^3y
.................................................
......!!!!!!!!...................................
21:07:37 ** (1/x^2 * y) / (x * y^2) = (1/x^2 * y) * 1 / (x * y^2) = y * 1 / ( x^2 * x * y^2) = y / (x^3 y^2) = 1 / (x^3 y). Alternatively, or as a check, you could use exponents on term as follows: (x^-2y)/(xy^2) = x^-2 * y * x^-1 * y^-2 = x^(-2 - 1) * y^(1 - 2) = x^-3 y^-1 = 1 / (x^3 y).**
......!!!!!!!!...................................
RESPONSE --> yes
.................................................
......!!!!!!!!...................................
21:17:39 query Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> = 4x^-2/x^4 * y^-1/y^2 * z^-1/z^5 * (-5)^2 subtracting exponents first you have: 4x(-2-4) * y(-1-2) *z (-1--5) * (-5)^2 = 4x^-6 * y^-3 * z^4 * -5^2 = 1/4x^6 * 1/y^3 * 25z^4 = 25z^4/4x^6y^3
.................................................
......!!!!!!!!...................................
21:22:46 ** Starting with 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression: (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents: (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further: (4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents: 4z^4/ (25x^6 * y^3 ) **
......!!!!!!!!...................................
RESPONSE --> In my response 25 was num and 4 the denom but our variables and powers are the same. Are both answers correct?
.................................................
......!!!!!!!!...................................
21:23:14 query R.2.122 (was R.4.72). Express 0.00421 in scientific notation.
......!!!!!!!!...................................
RESPONSE --> 4.21*10^-3
.................................................
......!!!!!!!!...................................
21:24:17 ** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
21:24:33 query R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.
......!!!!!!!!...................................
RESPONSE --> 9700
.................................................
......!!!!!!!!...................................
21:24:40 ** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
21:28:53 query R.2.150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?
......!!!!!!!!...................................
RESPONSE --> for t=97 | 97-98.6| greater than or equal to 1.5 |-1.6| = 1.6 is greater than 1.5 for t=100 |100-98.6| greater than 1.5 |1.4} = 1.4 is less than 1.5 not an unhealthy temp.
.................................................
......!!!!!!!!...................................
21:29:10 ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5. But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or | 1.4 | > 1.5, giving us 1.4>1.5, which is an untrue statement. **
......!!!!!!!!...................................
RESPONSE --> right
.................................................