course Phy 121 ????????????assignment #012012. Problems involving motion and force.
......!!!!!!!!...................................
14:45:09 `q001. Note that there are 4 problems in this set. Two 3 kg masses are suspended over a pulley and a 1 kg mass is added to the mass on one side. Friction exerts a force equal to 2% of the total weight of the system. If the system is given an initial velocity of 5 m/s in the direction of the lighter side, how long will a take the system to come to rest and how far will it travel?
......!!!!!!!!...................................
RESPONSE --> There are a lot of questions here. I calculated the weight for each side and on the heavier side there were 39.2 N and on the lighter side it was 29.4 N. Then the total weight of the system would be 68.6N. The force of friction would be 68.6 * .02 = 1.372. From there, I don't know how to get to how long it will take the system to come to rest. confidence assessment: 2
.................................................
......!!!!!!!!...................................
14:52:40 We know the initial velocity of the system and, for the period until it comes to rest, we know that its final velocity will be 0 m/s. If we can find the acceleration, we will have three of the five necessary variables with which to analyze the motion and we can therefore determine the time interval `dt and displacement `ds corresponding to this period. We begin by analyzing the forces acting on the system. Before we do so we declare the positive direction of motion for this system to be the direction in which the system moves as the greater of the two hanging masses descends, i.e., the direction of the net force on the system Gravity exerts forces of 4 kg * 9.8 m/s^2 = 39.2 Newtons on the 4 kg mass and 3 kg * 9.8 m/s^2 = 29.4 Newtons on the 3 kg mass. Taking the positive direction to be the direction in which the system moves when the 4 kg mass descends, as stated earlier, then these forces would be +39.2 Newtons and -29.4 Newtons. The total mass of the system is 7 kg, so its total weight is 7 kg * 9.8 m/s^2 = 68.4 Newtons and the frictional force is therefore frictional force = .02 * 68.4 Newtons = 1.4 Newtons, approx.. If the system is moving in the negative direction, then the frictional force is opposed to this direction and therefore positive so the net force on the system is +39.2 Newtons - 29.4 Newtons + 1.4 Newtons = +11.2 Newtons. This results in an acceleration of +11.2 N / (7 kg) = 1.6 m/s^2. We now see that v0 = -5 m/s, vf = 0 and a = 1.6 m/s^2. From this we can easily reason out the desired conclusions. The change in velocity is +5 m/s and the average velocity is -2.5 m/s. At the rate of 1.6 m/s^2, the time interval to change the velocity by +5 m/s is `dt = +5 m/s / (1.6 m/s^2) = 3.1 sec, approx.. At an average velocity of -2.5 m/s, in 3.1 sec the system will be displaced `ds = -2.5 m/s * 3.1 s = -7.8 meters. These conclusions could also have been reached using equations: since vf = v0 + a `dt, `dt - (vf - v0) / a = (0 m/s - (-5 m/s) ) / (1.6 m/s^2) = 3.1 sec (appxox). Since `ds = .5 (v0 + vf) * `dt, `ds = .5 (-5 m/s + 0 m/s) * 3.1 s = -7.8 meters.
......!!!!!!!!...................................
RESPONSE --> I don't understand how the frictional force becomes positive if it is supposed to the opposing the positive force. Also, how is the initial velocity -5m/s? Other than that I can use the equations and reason out how to solve for the last 2 variables. I just need to figure out how to set the problem up first. self critique assessment: 2
.................................................
......!!!!!!!!...................................
14:59:36 `q002. If the system in the previous example was again given an initial velocity of 5 m/s in the direction of the 3 kg mass, and was allowed to move for 10 seconds without the application of any external force, then what would be its final displacement relative to its initial position?
......!!!!!!!!...................................
RESPONSE --> Since the mass will drop the other way, all the numbers need to to be negative when they were positve and positive when they were negative. So the total force wuold be -39.2 N + 29.4 N - 1.4 N = -11.2 N. Then the acceleration would be -11.2 / 7 kg = -1.6. The average velocity would now be + 2.5 so the displacement would be -1.6 * 2.5 = -4 confidence assessment: 2
.................................................
......!!!!!!!!...................................
15:04:35 Since the acceleration of the system is different if it is moving in the positive direction than when it is moving in the negative direction, if we have both positive and negative velocities this problem must the separated into two parts. As seen in the previous example, in the first 3.2 seconds the system displaces -7.8 meters. This leaves 6.8 seconds after that instant during which the system may accelerate from rest in the positive direction. We therefore analyze the motion from the instant the system comes to rest until the remaining .8 seconds has elapsed. The frictional force during this time will be negative, as it must oppose the direction of motion. The net force on the system will therefore be + 39.2 Newtons -29.4 Newtons - 1.4 Newtons = 8.4 Newtons, and the acceleration will be 8.4 Newtons / (7 kg) = 1.2 m/s^2, approx.. The initial velocity during this phase is 0, the time interval is 6.8 sec and the acceleration is 1.2 m/s^2. We therefore conclude that the velocity will change by 1.2 m/s^2 * 6.8 sec = 8.2 m/s, approx, ending up at 8.2 m/s since this phase started at 0 m/s. This gives an average velocity of 4.1 m/s; during 6.8 sec the object therefore displaces `ds = 4.1 m/s * 6.8 sec = 28 meters approx.. These results could have also been easily obtained from equations. For the entire 10 seconds, the displacements were -7.8 meters and +28 meters, for a net displacement of approximately +20 meters. That is, the system is at this instant about 20 meters in the direction of the 4 kg mass from its initial position.
......!!!!!!!!...................................
RESPONSE --> Again, I get how the problem is solved mathematically, but I don't know what is positive or what is negative to set up the equation. Now I get why the friction is negative, but in the previous one I don't see why it was positive. I would have never gotten that the time interval would be 6.8 seconds instead of the 10 seconds that was given in the problem. self critique assessment: 2
.................................................
......!!!!!!!!...................................
15:11:56 `q003. An automobile has a mass of 1400 kg, and as it rolls the force exerted by friction is .01 times the 'normal' force between its tires and the road. The automobile starts down a 5% incline (i.e., an incline with slope .05) at 5 m/s. How fast will it be moving when it reaches the bottom of the incline, which is 100 meters away (neglect air friction and other forces which are not part of the problem statement)?
......!!!!!!!!...................................
RESPONSE --> 1400 kg * 9.8 m/s = 13720 N 13720 * .01 = 137.2 frictional force 13720 - 137. 2 = 13582.8 N That's as far as I got. confidence assessment: 1
.................................................
......!!!!!!!!...................................
15:19:01 We are given the initial velocity and displacement of the automobile, so we need only find the acceleration and we can analyzes problem as a standard uniform acceleration problem. The automobile experiences a net force equal to the component of its weight which is parallel to the incline plus the force of friction. If we regard the direction down the incline as positive, the parallel component of the weight will be positive and the frictional force, which must be in the direction opposite that of the velocity, will be negative. The weight of the automobile is 1400 kg * 9.8 m/s^2 = 13720 Newtons, so the component of the weight parallel to the incline is parallel weight component = 13720 Newtons * .05 = 686 Newtons. The normal force between the road and the tires is very nearly equal to the weight of the car because of the small slope, so the magnitude of the frictional force is approximately frictional force = 13720 Newtons * .01 = 137 Newtons, approx.. The frictional force is therefore -137 Newtons and the net force on the automobile is Fnet = 686 Newtons - 137 Newtons = 550 Newtons (approx.). It follows that the acceleration of the automobile must be a = Fnet / m = 550 Newtons / 1400 kg = .4 m/s^2 (approx.). We now have a uniform acceleration problem with initial velocity v0 = 5 meters/second, displacement `ds = 100 meters and acceleration a = .4 m/s^2. We can easily find the final velocity using the equation vf^2 = v0^2 + 2 a `ds, which gives us vf = +- `sqrt(v0^2 + 2 a `ds) = +- `sqrt( (5 m/s)^2 + 2 * .4 m/s^2 * 100 m) = +- `sqrt( 25 m^2 / s^2 + 80 m^2 / s^2) = +-`sqrt(105 m^2 / s^2) = +- 10.2 m/s. It is obvious that the final velocity in this problem is the positive solution +10.2 m/s, since the initial velocity and acceleration are both positive.
......!!!!!!!!...................................
RESPONSE --> I was wondering how the slope fit into this equation. Now I know that this is the weight which is parallel to the incline. From there I could get the acceleration and then solve it using the equations. self critique assessment: 2
.................................................
......!!!!!!!!...................................
15:26:50 `q004. If the automobile in the previous example started at the bottom of the incline with velocity up the incline of 11.2 m/s, how far up the hill would it be able to coast?
......!!!!!!!!...................................
RESPONSE --> I got the acceleration to be -.588 m/s/s. From there, I am not sure how to get the `ds. confidence assessment: 1
.................................................
......!!!!!!!!...................................
15:31:55 We again have a uniform acceleration situation where the initial velocity is known and we have the information to determine the acceleration. The other quantity we can deduce is the final velocity, which at the furthest point up the hill will be zero. Since the automobile is coasting up the incline, we will take the upward direction as positive. The frictional force will still be 137 Newtons and will again be directed opposite the velocity, so will therefore be negative. The parallel component of the weight will be the same as before, 686 Newtons, but being directed down the incline will be in the direction opposite to that if the velocity and will therefore also be negative. The net force on the automobile therefore be net force = -686 Newtons - 137 Newtons = -820 Newtons (approx.). Its acceleration will be a = Fnet / m = -820 Newtons / 1400 kg = -.6 m/s^2 (approx.). We see now that v0 = 11.2 m/s, vf = 0 and a = -.6 m/s^2. Either by direct reasoning or by using an equation we easily find that `dt = (-11.2 m/s) / (-.6 m/s^2) = 19 sec (approx) and `ds = (11.2 m/s + 0 m/s) / 2 * 19 sec = 5.6 m/s * 19 sec = 106 meters (approx).
......!!!!!!!!...................................
RESPONSE --> I forgot that the vf will be zero since it's coming to a stop. That would have given me my 3rd variable to then solve for time and then displacement. I guess I have to really think these problems all the way through. self critique assessment: 2
.................................................
???????x?~???assignment #013 013. Energy Physics I 06-21-2007
......!!!!!!!!...................................
19:25:36 `q001. An object of mass 10 kg is subjected to a net force of 40 Newtons as it accelerates from rest through a distance of 20 meters. Find the final velocity of the object.
......!!!!!!!!...................................
RESPONSE --> a = 10 kg/40N a = .25 vf = sqrt = v0^2 + 2 a `ds vf = 3.16 confidence assessment: 3
.................................................
......!!!!!!!!...................................
19:27:15 We know the initial velocity v0 = 0 and the displacement `ds = 20 meters. We have the information we need to determine the acceleration of the object. Once we find that acceleration we can easily determine its final velocity vf. We first find the acceleration. The object is subjected to a net force of 40 Newtons and has mass 10 kg, so that will have acceleration a = Fnet / m = 40 Newtons / 10 kg = 4 m/s^2. We can use the equation vf^2 = v0^2 + 2 a `ds to see that vf = +- `sqrt( v0^2 + 2 a `ds ) = +- `sqrt ( 0 + 2 * 4 m/s^2 * 20 meters) = +-`sqrt(160 m^2 / s^2) = +-12.7 m/s. The acceleration and displacement have been taken to be positive, so the final velocity will also be positive and we see that vf = + 12.7 m/s.
......!!!!!!!!...................................
RESPONSE --> I made a dumb mistake and put 10/40 for some reason. self critique assessment: 2
.................................................
......!!!!!!!!...................................
19:30:54 `q002. Find the value of the quantity 1/2 m v^2 at the beginning of the 20 meter displacement, the value of the same quantity at the end of this displacement, and the change in the quantity 1/2 m v^2 for this displacement.
......!!!!!!!!...................................
RESPONSE --> At the beginning, it is 0. At the end, it is 799.99. The change in the quantity is 799.99. confidence assessment: 3
.................................................
......!!!!!!!!...................................
19:31:09 Over the 20 meter displacement the velocity changes from v0 = 0 m/s to vf = 12.7 m/s. Thus the quantity 1/2 m v^2 changes from initial value 1/2 (10 kg) (0 m/s)^2 = 0 to final value 1/2 (10 kg)(12.7 m/s)^2 = 800 kg m^2 / s^2.
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
19:36:26 `q003. Find the value of the quantity Fnet * `ds for the present example, and express this quantity in units of kg, meters and seconds.
......!!!!!!!!...................................
RESPONSE --> 40N * 20 M = 800. I don't know what the units are. confidence assessment: 2
.................................................
......!!!!!!!!...................................
19:39:13 Fnet = 40 Newtons and `ds = 20 meters, so Fnet * `ds = 40 Newtons * 20 meters = 800 Newton meters. Recall that a Newton (being obtained by multiplying mass in kg by acceleration in m/s^2) is a kg * m/s^2, so that the 800 Newton meters can be expressed as 800 kg m/s^2 * meters = 800 kg m^2 / s^2.
......!!!!!!!!...................................
RESPONSE --> I didn't know the units of this answer, but now I do. self critique assessment: 2
.................................................
......!!!!!!!!...................................
19:40:46 The change in the quantity Fnet * `ds is 800 kg m^2 / s^2 and the change in 1/2 m v^2 is 800 kg m^2 / s^2. The quantities are therefore the same. This quantity could also be expressed as 800 Newton meters, as it was in the initial calculation of the less question. We define 1 Joule to be 1 Newton * meter, so that the quantity 800 Newton meters is equal to 800 kg m^2 / s^2 and also equal to 800 Joules.
......!!!!!!!!...................................
RESPONSE --> They are the same. self critique assessment: 3
.................................................
......!!!!!!!!...................................
19:46:38 `q005. Suppose that all the quantities given in the previous problem are the same except that the initial velocity is 9 meters / second. Again calculate the final velocity, the change in (1/2 m v^2) and Fnet * `ds.
......!!!!!!!!...................................
RESPONSE --> vf = 15.524 .5mvf^2 = 1161.288 .5mv0^2 = 405 Fnet * `ds = 800 kg m^2/s^2 confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:01:40 The work done by a 12 Newton force acting through a displacement of 100 meters is 12 Newtons * 100 meters = 1200 Newton meters = 1200 Joules. A 48 kg object subjected to a net force of 12 Newtons will accelerate at the rate a = Fnet / m = 12 Newtons / 48 kg = .25 m/s^2. Starting from rest and accelerating through a displacement of 100 meters, this object attains final velocity vf = +- `sqrt( v0^2 + 2 a `ds) = +- `sqrt( 0^2 + 2 * .25 m/s^2 * 100 m) = +-`sqrt(50 m^2/s^2) = 7.1 m/s (approx.). Its KE therefore goes from KE0 = 1/2 m v0^2 = 0 to KEf = 1/2 m vf^2 = 1/2 (48 kg) (7.1 m/s)^2 = 1200 kg m^2/s^2 = 1200 Joules. This is the same quantity calculated usin Fnet * `ds.Thus the change in kinetic energy is equal to the work done.
......!!!!!!!!...................................
RESPONSE --> I used an example and got the same vf and .5v^2. Using the formulas though without any examples, I see how this will always be so. For question 7, I got ahead of myself in the next/question answer part, but I see how it was solved and understand it. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:04:54 `q008. How much work is done by the net force when an object of mass 200 kg is accelerated from 5 m/s to 10 m/s? Find your answer without using the equations of motion.
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
20:07:57 The work done by the net force is equal to the change in the KE of the object. The initial kinetic energy of the object is KE0 = 1/2 m v0^2 = 1/2 (200 kg) (5 m/s)^2 = 2500 kg m^2/s^2 = 2500 Joules. The final kinetic energy is KEf = 1/2 m vf^2 = 1/2 (200 kg)(10 m/s)^2 = 10,000 Joules. The change in the kinetic energy is therefore 10,000 Joules - 2500 Joules = 7500 Joules. The same answer would have been calculated calculating the acceleration of the object, which because of the constant mass and constant net force is uniform, the by using the equations of motion to determine the displacement of the object, the multiplying by the net force.
......!!!!!!!!...................................
RESPONSE --> Again, I got ahead of myself but after doing all of the previous questions I got that the .5mv^2 = the work done by the net force so I solved it this way anyway. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:09:47 `q009. Answer the following without using the equations of uniformly accelerated motion: If the 200 kg object in the preceding problem is uniformly accelerated from 5 m/s to 10 m/s while traveling 50 meters, then what net force was acting on the object?
......!!!!!!!!...................................
RESPONSE --> Fnet * `ds = 7500 Fnet * 50 = 7500 Fnet = 150 confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:10:02 The net force did 7500 Joules of work. Since the object didn't change mass and since its acceleration was constant, the net force must have been constant. So the work done was `dWnet = Fnet * `ds = 7500 Joules. Since we know that `ds is 50 meters, we can easily solve for Fnet: Fnet = `dWnet / `ds = 7500 Joules / 50 meters = 150 Newtons. [Note that this problem could have been solved using the equations of motion to find the acceleration of the object, which could then have been multiplied by the mass of the object to find the net force. The solution given here is more direct, but the solution that would have been obtain using the equations of motion would have been identical to this solution. The net force would have been found to be 300 Newtons. You can and, if time permits, probably should verify this. ]
......!!!!!!!!...................................
RESPONSE --> ok. self critique assessment: 3
.................................................
......!!!!!!!!...................................
20:13:57 `q010. Solve the following without using any of the equations of motion. A net force of 5,000 Newtons acts on an automobile of mass 2,000 kg, initially at rest, through a displacement of 80 meters, with the force always acting parallel to the direction of motion. What velocity does the automobile obtain?
......!!!!!!!!...................................
RESPONSE --> Fnet * `ds = 5000*2000 = 10000000 .5(2000)v^2 = 10000000 v = 100 confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:15:47 The We know that the net force does work `dWnet = Fnet * `ds = 5000 Newtons * 80 meters = 400,000 Joules. We know that the kinetic energy of the automobile therefore changes by 400,000 Joules. Since the automobile started from rest, its original kinetic energy KE0 was 0. We conclude that its final kinetic energy KEf must have been 400,000 Joules. Since KEf = 1/2 m vf^2, this is an equation we can solve for vf in terms of m and KEf, both of which we now know. We can first multiply both sides of the equation by 2 / m to obtain 2 * KEf / m = vf^2, then we can take the square root of both sides of the equation to obtain vf = +- `sqrt(2 * KEf / m) = +- `sqrt( 2 * 400,000 Joules / (2000 kg) ) = +- `sqrt( 400 Joules / kg). At this point we had better stop and think about how to deal with the unit Joules / kg. This isn't particularly difficult if we remember that a Joule is a Newton * meter, that a Newton is a kg m/s^2, and that a Newton * meter is therefore a kg m/s^2 * m = kg m^2 / s^2. So our expression +- `sqrt(400 Joules / kg) can be written +_`sqrt(400 (kg m^2 / s^2 ) / kg) and the kg conveniently divides out to leave us +_`sqrt(400 m^2 / s^2) = +- 20 m/s. We choose +20 m/s because the force and the displacement were both positive. Thus the work done on the object by the net force results in a final velocity of +20 m/s.
......!!!!!!!!...................................
RESPONSE --> For some reason I plugged in mass for `ds. Other than that I think I solved the question correctly. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:20:42 `q011. If the same net force was exerted on the same mass through the same displacement as in the previous example, but with initial velocity 15 m/s, what would then be the final velocity of the object?
......!!!!!!!!...................................
RESPONSE --> a = 5,000/2,000 vf = sqrt 15^2 + 2*2.5*80 vf = 25 m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:20:59 Again the work done by the net force is still 400,000 Joules, since the net force and displacement have not changed. However, in this case the initial kinetic energy is KE0 = 1/2 m v0^2 = 1/2 (200 kg) (15 m/s)^2 = 225,000 Joules. Since the 400,000 Joule change in kinetic energy is still equal to the work done by the net force, the final kinetic energy must be KEf = KE0 + `dKE = 225,000 Joules + 400,000 Joules = 625,000 Joules. Since 1/2 m vf^2 = KEf, we again have vf = +- `sqrt(2 * KEf / m) = +-`sqrt(2 * 625,000 Joules / (2000 kg) ) = +-`sqrt(2 * 625,000 kg m^2/s^2 / (2000 kg) ) = +-`sqrt(625 m^2/s^2) = 25 m/s.
......!!!!!!!!...................................
RESPONSE --> ok. self critique assessment: 3
.................................................
......!!!!!!!!...................................
20:27:22 `q012. Solve without using the equations of motion: A force of 300 Newtons is applied in the direction of motion to a 20 kg block as it slides 30 meters across a floor, starting from rest, moving against a frictional force of 100 Newtons. How much work is done by the net force, how much work is done by friction and how much work is done by the applied force? What will be the final velocity of the block?
......!!!!!!!!...................................
RESPONSE --> The work of net force is 4000N. The work of friction is 2000N. The final velocity will be 24.49 m/s. confidence assessment: 2
.................................................
......!!!!!!!!...................................
20:29:11 The block experiences a force of 300 Newtons in its direction of motion and a force of 100 Newtons opposite its direction motion. It therefore experiences a net force of Fnet = 300 N - 100 N = 200 N. The work done by the net force is therefore `dWnet = 200 N * 30 m = 6000 Joules. The work done by the 300 Newton applied force is `dWapplied = 300 N * 30 m = 9000 Joules. The work done by friction is `dWfrict = -100 N * 30 m = -3000 Joules (note that the frictional forces in the direction opposite to that of the displacement). Note that the 6000 J of work done by the net force can be obtained by adding the 9000 J of work done by the applied force to the -3000 J of work done by friction. The final velocity of the object is obtained from its mass and final kinetic energy. Its initial KE is 0 (it starts from rest) so its final KE is KEf = 0 + `dKE = 0 + 6000 J = 6000 J. Its velocity is therefore vf = +- `sqrt(2 KEf / m) = `sqrt(12,000 J / (20 kg) ) = +-`sqrt( 600 (kg m^2 / s^2) / kg ) = +-`sqrt(600 m^2/s^2) = +- 24.5 m/s (approx.). We choose the positive final velocity because the displacement and the force are both in the positive direction.
......!!!!!!!!...................................
RESPONSE --> Again, I keep multiplying by the mass instead of the distance. But, I didn't say that friction would be negative and now obviously it is since it is opposing the work. self critique assessment: 2
.................................................
"