asst 15 query

course Phy 121

MxH{ꝁcw߸Ȭډassignment #001

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

޷ױ

Liberal Arts Mathematics I

06-25-2007

......!!!!!!!!...................................

12:32:04

Problem Number 1

A coasting cart has velocities 4.5 m/s, 10 m/s and 2.25 m/s at clock times t = 0 s, 9 s and 13 s. Approximately how far does it move and at what average rate does it accelerate over each of the two time intervals (i.e., 0- 9 seconds and 9 - 13 seconds)?

Show how you could use a graph of velocity vs. time to obtain your results.

Directly reason out your results using the concept of rate.

If the automobile is coasting, and if air resistance is not a significant factor, then over which time interval do you think the average slope of the road is greatest?

......!!!!!!!!...................................

RESPONSE -->

.................................................

̚LyF٥j|

assignment #015

015. `query 15

Physics I

06-25-2007

......!!!!!!!!...................................

23:20:02

Set 4 probs 1-7

If we know the net force acting on an object and the time during which the force acts, we can find the change in what important quantity?

......!!!!!!!!...................................

RESPONSE -->

net force * time = impulse of net force

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:20:28

** You can find the change in the momentum. Fnet * `ds is change in KE; Fnet * `dt is change in momentum. **

......!!!!!!!!...................................

RESPONSE -->

change in momentum = impulse

self critique assessment: 2

.................................................

......!!!!!!!!...................................

23:21:01

What is the definition of the momentum of an object?

......!!!!!!!!...................................

RESPONSE -->

momentum is mass * change in velocity

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:21:10

** momentum = mass * velocity.

Change in momentum is mass * change in velocity (assuming constant mass).

UNIVERSITY PHYSICS NOTE: If mass is not constant then change in momentum is change in m v, which by the product rule changes at rate dp = m dv + v dm. If mass is constant `dm = 0 and dp = m dv so `dp = m * `dv. **

......!!!!!!!!...................................

RESPONSE -->

ok.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:22:09

How do you find the change in the momentum of an object during a given time interval if you know the average force acting on the object during that time interval?

......!!!!!!!!...................................

RESPONSE -->

you would multiply the force by change in time to get the change in momentum

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:22:17

** Since impulse = ave force * `dt = change in momentum, we multiply ave force * `dt to get change in momentum. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:23:13

How is the impulse-momentum theorem obtained from the equations of uniformly accelerated motion and Newton's Second Law?

......!!!!!!!!...................................

RESPONSE -->

I know it's a breakdown and substitution of newtons second law and uniformly accelerated motion equations, but i'm not sure how to get it.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

23:23:48

** First from F=ma we understand that a=F/m.

Now if we take the equation of uniformly accelerated motion vf= v0 + a'dt and subtract v0 we get vf-v0 = a'dt.

Since vf-v0 = 'dv, this becomes 'dv = a'dt.

Now substituting a=F/m , we get

'dv = (F/m)'dt Multiplying both sides by m,

m'dv = F'dt **

......!!!!!!!!...................................

RESPONSE -->

I see how this works now.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:24:35

If you know the (constant) mass and the initial and final velocities of an object, as well as the time required to change from the initial to final velocity, there are two strategies we can use to find the average force exerted on the object. What are these strategies?

......!!!!!!!!...................................

RESPONSE -->

You can use the equations for uniformly accelerated motion to find average force or you could use momentum and impulse to find it.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:24:51

** The impulse-momentum theorem for constant masses is m `dv = Fave `dt. Thus Fave = m `dv / `dt.

We could alternatively find the average acceleration aAve = (vf - v0) / `dt, which we then multiply by the constant mass to get Fave. **

......!!!!!!!!...................................

RESPONSE -->

ok.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:26:10

Class notes #14.

How do we combine Newton's Second Law with an equation of motion to obtain the definition of energy?

......!!!!!!!!...................................

RESPONSE -->

I didn't take notes on this, but I am curious as to what the answer is.

confidence assessment: 1

.................................................

......!!!!!!!!...................................

23:26:57

** a = F / m.

vf^2 = v0^2 + 2 a `ds. So

vf^2 = v0^2 + 2 (Fnet / m) `ds.

Multiply by m/2 to get

1/2 mvf^2 = 1/2 m v0^2 + Fnet `ds so

Fnet `ds = 1/2 m vf^2 - 1/2 m v0^2--i.e., work = change in KE. **

......!!!!!!!!...................................

RESPONSE -->

When you say energy, I didn't think of it as work. Now that I know it means work, or change in KE, I think I could have solved for it.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

23:28:45

What is kinetic energy and how does it arise naturally in the process described in the previous question?

......!!!!!!!!...................................

RESPONSE -->

Kinetic energy is the energy of motion. It's going to come about when there is a force that gives a certain velocity like used in the equations before.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:28:53

** KE is the quantity 1/2 m v^2, whose change was seen in the previous question to be equal to the work done by the net force. **

......!!!!!!!!...................................

RESPONSE -->

ok.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:29:43

What forces act on an object as it is sliding up an incline?

......!!!!!!!!...................................

RESPONSE -->

There are parallel forces, the forces of gravity acting against the object, or if there is friction.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:30:38

** Gravitational force can be broken into two components, one parallel and one perpendicular to the ramp. The normal force exerted by the ramp is an elastic force, and unless the ramp breaks the normal force is equal and opposite to the perpendicular component of the gravitational force. Frictional force arises from the normal force between the two surfaces, and act in the direction opposed to motion.

The gravitational force is conservative; all other forces in the direction of motion are nonconservative.

COMMON ERROR:

The Normal Force is in the upward direction and balances the gravitational force.

COMMENT:

The normal force is directed only perpendicular to the incline and is in the upward direction only if the incline is horizontal. The normal force cannot balance the gravitational force if the incline isn't horizontal. Friction provides a component parallel to the incline and opposite to the direction of motion. **

......!!!!!!!!...................................

RESPONSE -->

I got the right answers, but now I see how to incorporate it into the elastic force and frictional force.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

23:31:38

For an object sliding a known distance along an incline how do we calculate the work done on the object by gravity? How do we calculate the work done by the object against gravity?

......!!!!!!!!...................................

RESPONSE -->

We can calculate work done gravity by using the acceleration of gravity and multiply that by the mass of the object. This will be in the positive direction. The work done by the object against gravity will be inthe negative direction.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:32:44

** The gravitational force is m * g directly downward, where g is the acceleration of gravity. m * g is the weight of the object.

If we know change in vertical position then we can simply multiply weight m * g with the vertical displacement `dy, being careful to keep track of which is positive and/or negative.

Alternatively it is instructive to consider the forces in the actual direction of motion along the incline.

For small inclines the component of the gravitational force which is parallel to the incline is approximately equal to the product of the weight and the slope of the incline, as seen in experiments.

The precise value of the component parallel to the incline, valid for small as well as large displacements, is m g * sin(theta), where theta is the angle of the incline with horizontal. This force acts down the incline.

If the displacement along the incline is `ds, measured with respect to the downward direction, then the work done by gravity is the product of force and displacement, m g sin(theta) * `ds. If `ds is down the incline the gravitational component along the incline is in the same direction as the displacement and the work done by gravity on the system is positive and, in the absence of other forces in this direction, the KE of the object will increase. This behavior is consistent with our experience of objects moving freely down inclines.

If the displacement is upward along the incline then `ds is in the opposite direction to the gravitational force and the work done by gravity is negative. In the absence of other forces in the direction of the incline this will result in a loss of KE, consistent with our experience of objects coasting up inclines.

The work done against gravity is the negative of the work done by gravity, positive for an object moving up an incline (we have to use energy to get up the incline) and negative for an object moving down the incline (the object tends to pick up energy rather than expending it) **

......!!!!!!!!...................................

RESPONSE -->

I didn't multiply it by the displacement which of course would be a variable when solving for work done (w = f`ds)

self critique assessment: 2

.................................................

......!!!!!!!!...................................

23:33:20

For an object sliding a known distance along an incline how do we calculate the work done by the object against friction? How does the work done by the net force differ from that done by gravity?

......!!!!!!!!...................................

RESPONSE -->

We would have to subtract the work of friction from the total work done.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

23:35:16

** The work done against friction is the product of the distance moved and the frictional force. Since the force exerted by friction is always opposed to the direction of motion, the force exerted by the system against friction is always in the direction of motion so the work done against friction is positive.

The net force on the system is sum of the gravitational component parallel to the incline and the frictional force. The work done by the net force is therefore equal to the work done by gravity plus the work done by the frictional force (in the case of an object moving up an incline, both gravity and friction do negative work so that the object must do positive work to overcome both forces; in the case of an object moving down an incline gravity does positive work on the system while friction, as always, does negative work on the system; in the latter case depending on whether the work done by gravity on the system is greater or less than the frictional work done against the system the net work done on the system may be positive or negative) **

......!!!!!!!!...................................

RESPONSE -->

This cleared up a lot of things about whether the object is doing the work or the having work done against it and how friction will be positive or negative. I never thought that if the object is doing work against friction it will do positive work to overcome it. I always thought friction was negative no matter what.

self critique assessment: 2

It is true that friction does negative work on a moving object.

The direction of kinetic friction (friction due to motion) is opposite the direction of motion.

.................................................

......!!!!!!!!...................................

23:36:38

Explain why the restoring force on a simple pendulum is in nearly the same proportion to the weight of the pendulum as its displacement from equilibrium to its length, and explain which assumption is made that makes this relationship valid only for displacements which are small compared to pendulum length.

......!!!!!!!!...................................

RESPONSE -->

I can't take this question apart enough to understand what it is asking.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

23:37:34

** In terms of similar triangles:

The reason the approximation only works for small displacements is because the sides used on one triangle are not the same as the sides used on the other. From the triangle we see that the restoring force and the weight are at right angles, while the length and horizontal displacement of the pendulum from equilibrium are the hypotenuse and the horizontal leg of a triangle and hence are not at right angles.

For small angles the two long sides of the triangle are approximately equal so the discrepancy doesn't make much difference. For larger angles where the two long sides are significantly different in length, the approximation no longer works so well.

In terms of components of the vectors:

The tension force is in the direction of the string.

The component of the tension force in the horizontal direction is therefore seen geometrically to be in the same proportion to the total tension as the length of the pendulum to the horizontal displacement (just draw the picture).

The vertical component of the tension force must be equal to the weight of the pendulum, since the pendulum is in equilibrium.

If the displacement is small compared to the length the vertical component of the tension force will be very nearly equal to the tension force. So the previous statement that 'The component of the tension force in the horizontal direction is therefore seen geometrically to be in the same proportion to the total tension as the length of the pendulum to the horizontal displacement' can be replaced by the statement that 'The component of the tension force in the horizontal direction is therefore seen geometrically to be in the same proportion to the weight of the pendulum as the length of the pendulum to the horizontal displacement. **

......!!!!!!!!...................................

RESPONSE -->

I am still not sure what this is talking about.

self critique assessment: 2

You'll see the details in Class Notes. The bottom line is that by analyzing the magnitudes and directions of the string tension, we can conclude that the restoring force is proportional to the displacement from equilibrium, provided the displacement is fairly small compared to the pendulum's length.

.................................................

......!!!!!!!!...................................

23:39:03

prin and gen phy: 6.4: work to push 160 kg crate 10.3 m, horiz, no accel, mu = .50.

......!!!!!!!!...................................

RESPONSE -->

To get force, I multiplied mass * acceleration to get zero. Then I multiplied this by the displacement to get zero for the work done. I know this is wrong, but I am not sure how to solve it.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

23:41:41

The net force on the crate must be zero, since it is not accelerating. The gravitational force on the crate is 160 kg * 9.8 m/s^2 = 1570 N, approx. The only other vertical force is the normal force, which must therefore be equal and opposite to the gravitational force.

As it slides across the floor the crate experiences a frictional force, opposite its direction of motion, which is equal to mu * normal force, or .50 * 1570 N = 780 N, approx.. The only other horizontal force is exerted by the movers, and since the net force on the crate is zero the movers must be exerting a force of 780 N in the direction of motion.

The work the movers do in 10.3 m is therefore

work = Fnet * `ds = 780 N * 10.3 m = 8000 N m = 8000 J, approx..

......!!!!!!!!...................................

RESPONSE -->

In the beginning it said that the net force was 0 and now it is 780. Is that 2 different forces acting on the object? Do you have to calculate 2 different forces, and if so what are they?

self critique assessment: 2

It isn't the net force that is 780 N. The net force is 0, since the acceleration is 0.

However if the object slides across the floor, a frictional force of 780 N opposes its motion, and the movers must exert 780 N of force to counter the frictional force. There are two opposite 780 N forces in the horizontal direction, making the net force zero.

.................................................

......!!!!!!!!...................................

23:41:47

gen phy prob 6.9: force and work accelerating helicopter mass M at .10 g upward thru dist h.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

23:41:51

To accelerate the helicopter at .10 g it must experience net force Fnet = mass * acceleration = M * .10 g = .10 M g.

The forces acting on the helicopter are its upward thrust T and the downward pull - M g of gravity, so the net force is T - M g. Thus we have

T - M g = .10 M g, and the upward thrust is

T = .10 M g + M g = 1.10 M g.

To exert this force through an upward displacement h would therefore require

work = force * displacement = 1.10 M g * h = 1.10 M g h.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

23:41:55

**** Univ: 6.58 (6.50 10th edition). chin-up .40 m, 70 J/kg of muscle mass, % of body mass in pullup muscles of can do just 1. Same info for son whose arms half as long.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

23:41:58

** For each kg of mass the weight is 1 kg * 9.8 m/s^2 = 9.8 N.

Work done to lift each kg of mass .4 m would then be 9.8 N * .4 m = 3.92 J.

The chin-up muscles generate 3.92 J per kg, which is 3.92 / 70 of the work one kg of muscle mass would produce. So the proportion of body mass in the pullup muscles is 3.92 / 70 = .056, or 5.6%.

For the son each kg is lifted only half as far so the son only has to do half the work per kg, or 1.96 J per kg.

For the son the proportion of muscle mass is therefore only 1.96 / 70 = 2.8%.

The son's advantage is the fact that he is lifting his weight half as high, requiring only half the work per kg. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

23:42:02

Univ. 6.72 (6.62 10th edition). net force 5 N/m^2 * x^2 at 31 deg to x axis; obj moves along x axis, mass .250 kg, vel at x=1.00 m is 4.00 m/s so what is velocity at x = 1.50 m?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

23:42:05

** Force is variable so you have to integrate force with respect to position.

Position is measured along the x axis, so you integrate F(x) = - k / x^2 with respect to x from x1 to x2.

An antiderivative of - k / x^2 is k / x so the integral is k / x2 - k / x1.

If x2 > x1, then k / x2 < k / x1 and the work is negative.

Also, if x2 > x1, then motion is in the positive x direction while F = - k / x^2 is in the negative direction. Force and displacement in opposite directions imply negative work by the force.

For slow motion acceleration is negligible so the net force is practically zero.

Thus the force exerted by your hand is equal and opposite to the force F = - k / x^2.

The work you do is opposite to the work done by the force so will be - (k / x2 - k / x1) = k/x1 - k/x2, which is positive if x2 > x1.

This is consistent with the fact that the force you exert is in the opposite direction to the force, therefore in the positive direction, as is the displacement.

Note that the work done by the force is equal and opposite to the work done against the force. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

"

&#

Your work looks good. See my notes. Let me know if you have any questions. &#