cq_1_001

#$&*

PHY 201

Your 'cq_1_00.1' report has been received. Scroll down through the document to see any comments I might have inserted, and my final comment at the end.

** CQ_1_00.1_labelMessages **

The problem:

You don't have to actually do so, but it should be clear that if you wished to do so, you could take several observations of positions and clock times. The main point here is to think about how you would use that information if you did go to the trouble of collecting it. However, most students do not answer these questions in terms of position and clock time information. Some students do not pause the video as instructed. To be sure you are thinking in terms of positions and clock times, please take a minute to do the following, which should not take you more than a couple of minutes:

• Pick one of the videos, and write down the position and clock time of one of the objects, as best you can determine them, in each of three different frames. The three frames should all depict the same 'roll' down the ramp, i.e. the same video clip, at three different clock times. They should not include information from two or more different video clips.

• For each of the three readings, simply write down the clock time as it appears on the computer screen, and the position of the object along the meter stick. You can choose either object (i.e., either the pendulum or the roll of tape), but use the same object for all three measurements. Do not go to a lot of trouble to estimate the position with great accuracy. Just make the best estimates you can in a couple of minutes.

Which object did you choose and what were the three positions and the three clock times?

answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):

I chose the roll of tape in video 1 as my object. Position 1 was 9-inches at 59.578s, position 2 was 12 inches at 59.687s, and position 3 was 19-inches at 59.906. I tried to get a position closer to zero, but the stick would be in the way of clock when I hit pause.

#$&*

In the following you don't have to actually do calculations with your actual data. Simply explain how you would use data of this nature if you had a series of several position vs. clock time observations:

• If you did use observations of positions and clock times from this video, how accurately do you think you could determine the positions, and how accurately do you think you would know the clock times? Give a reasonable numerical answer to this question (e.g., positions within 1 meter, within 2 centimeters, within 3 inches, etc; clock times within 3 seconds, or within .002 seconds, or within .4 seconds, etc.). You should include an explanations of the basis for your estimate: Why did you make the estimate you did?

answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):

I am not sure exactly what is being asked. If I had a graph showing position vs. clock time, I would try to write an equation that would follow the graph. I don’t think I could accurately depict a graph by following the positions in the video because I was estimating where the roll of tape was at the time on your timer. Also, there must have been some kind of delay when the roll of tape of released. The TIME may have an accuracy of .001.

#$&*

• How can you use observations of position and clock time to determine whether the tape rolling along an incline is speeding up or slowing down?

answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):

I could compare the time from point A to point B to get the average speed (distance divided by time), then calculate speed between point B and point C, all the way till the end. My measurements would be more accurate if I had several readings. Three readings would not suffice in making an accurate conclusion. If I could get a reading for every inch, then I could be more accurate.

#$&*

• How can you use observations of position and clock time to determine whether the swinging pendulum is speeding up or slowing down?

answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):

It would similar to what I said above. I could take several measurements at certain times during a cycle to see if it is decreasing or increasing.

#$&*

• Challenge (University Physics students should attempt answer Challenge questions; Principles of Physics and General College Physics may do so but it is optional for these students): It is obvious that a pendulum swinging back and forth speeds up at times, and slows down at times. How could you determine, by measuring positions and clock times, at what location a swinging pendulum starts slowing down?

answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):

#$&*

• Challenge (University Physics students should attempt answer Challenge questions; Principles of Physics and General College Physics may do so but it is optional for these students): How could you use your observations to determine whether the rate at which the tape is speeding up is constant, increasing or decreasing?

answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):

#$&*

*#&!

&#Very good responses. Let me know if you have questions. &#