#$&* course PHY 201 9:15 PM on 2/11/13 006. Using equations with uniformly accelerated motion.
.............................................
Given Solution: The equation vf = v0 + a * `dt is solved for a by first adding -v0 to both sides to obtain vf - v0 = v0 + a * `dt - v0, which simplifies to vf - v0 = a * `dt. Both sides are then divided by `dt to obtain (vf - v0) / `dt = a. Reversing left-and right-hand sides we obtain the formula a = (vf - v0) / `dt. We then plug in our given values of initial and final velocities and the time interval. Since velocity increases from 10 m/s to 30 m/s, initial velocity is v0 = 10 m/s and final velocity is vf = 30 m/s. The time interval `dt is 15 seconds, so we have a = (30 m/s - 10 m/s) / (15 s) = 20 m/s / (15 s) = 1.33.. m/s^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002. It wasn't necessary to use a equation to solve this problem. How could this problem had been reasoned out without the use of an equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Find the difference between the final and starting velocities and divide it by the time interval. The same steps as using the equation, however, I can do this by not having to write the equation to solve for acceleration. confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Knowing that acceleration is the average rate at which velocity changes, we would first find the change in velocity from 10 meters/second to 30 meters/second, which is 20 meters/second. We would then divided change in velocity by the time interval to get 20 meters/second / (15 sec) = 1.33 m/s^2. STUDENT QUESTION (about reasoning vs. using the equation) I understand but the steps taken to get to the acceleration were the steps of the equation????? INSTRUCTOR RESPONSE The steps outlined here are the steps we could use to derive the equation. However it's possible to use the equation blindly, without understanding the reasoning behind it. In fact this is how most student use the equation, if not asked questions of this nature about the reasoning. So, this question asks for the reasoning. The first statement in the given solution is 'Knowing that acceleration is the average rate at which velocity changes, we would first find the change in velocity from 10 meters/second to 30 meters/second, which is 20 meters/second.' When using the equation you never explicitly find or reason out the change in velocity, though of course the change in velocity is there in the equation, represented by the term a * `dt. In other words, you do find it, but you can use the equation without ever recognizing that you have done so. Similarly the step a = (30 m/s - 10 m/s) / 15 s in your equation-based solution does correctly divide the change in velocity by the time interval, but you can use the equation to do this without ever recognizing that you have done so. The direct reasoning solution never mentions or uses the equation, though of course direct reasoning can be used to derive the equation. This should help illustrate the difference between direct reasoning and using an equation. Both skills are important. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Use the equation `ds = (vf + v0) / 2 * `dt to determine the initial velocity of an object which accelerates uniformly through a distance of 80 meters in 10 seconds, ending up at a velocity of 6 meters / sec. begin by solving the equation for the desired quantity. Show every step of your solution. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v0 = ('ds / 'dt) * 2 - vf; 'ds = 80 m, 'dt = 10 s, vf = 6 m/s v0 = (80 m / 10 s) * 2 - 6 m/s = 10 m/s confidence rating #$&*:#8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We begin by solving the equation for v0. Starting with `ds = (vf + v0) / 2 * `dt, we can first multiply both sides of the equation by 2 / `dt, which gives us `ds * 2 / `dt = (vf + v0) / 2 * `dt * 2 / `dt. The right-hand side can be rearranged to give (vf + v0) * `dt / `dt * 2 / 2; since `dt / `dt = 1 and 2 / 2 = 1 the right-hand side becomes just vf + v0. The equation therefore becomes 2 * `ds / `dt = vf + v0. Adding -vf to both sides we obtain v0 = 2 * `ds / `dt - vf. We now plug in `ds = 80 meters, `dt = 10 sec and vf = 6 m/s to get v0 = 2 * 80 meters / 10 sec - 6 m/s = 160 meters / 10 sec - 6 m/s = 16 m/s - 6 m/s = 10 m/s. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. We can reconcile the above solution with straightforward reasoning. How could the initial velocity have been reasoned out from the given information without the use of an equation? Hint: two of the quantities given in the problem can be combined to give another important quantity, which can then be combined with the third given quantity to reason out the final velocity. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: vAve = 'ds / 'dt = 80 m / 10 s = 8 m/s. vAve is somewhere between v0 and vf. If we know that vf = 6 m/s and vAve = 8 m/s, then v0 must be around 10 m/s because there is a 2 m/s difference between vAve and vf. confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The average velocity of the object is the average rate at which its position changes, which is equal to the 80 meters change in position divided by the 10 s change in clock time, or 80 meters / 10 sec = 8 meters / sec. Since the 8 m/s average velocity is equal to the average of the unknown initial velocity and the 6 m/s final velocity, we ask what quantity when average with 6 m/s will give us 8 m/s. Knowing that the average must be halfway between the two numbers being averaged, we see that the initial velocity must be 10 m/s. That is, 8 m/s is halfway between 6 m/s and 10 m/s. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q005. Using the equation `ds = v0 `dt + .5 a `dt^2 determine the initial velocity of an object which accelerates uniformly at -2 m/s^2, starting at some unknown velocity, and is displaced 80 meters in 10 seconds. Begin by solving the equation for the unknown quantity and show every step. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v0 = ('ds - 0.5 a 'dt^2) / /dt v0 = (80 m - 0.5(-2 m/s^2)(10^2 s) / 10 s = 18 m/s confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The unknown quantity is the initial velocity v0. To solve for v0 we start with `ds = v0 `dt + .5 a `dt^2. We first add -.5 a `dt^2 to both sides to obtain `ds - .5 a `dt^2 = v0 `dt. We then divide both sides by `dt to obtain (`ds - .5 a `dt^2) / `dt = v0. Then we substitute the given displacement `ds = 80 meters, acceleration a = -2 m/s^2 and time interval `dt = 10 seconds to obtain v0 = [ 80 meters - .5 * (-2 m/s^2) * (10 sec)^2 ] / (10 sec) = [ 80 meters - .5 * (-2 m/s^2) * 100 s^2 ] / (10 sec) = [ 80 m - (-100 m) ] / (10 sec) = 180 m / (10 s) = 18 m/s. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q006. Check the consistency of this result by verifying, by direct reasoning rather than equations, that an object whose initial velocity is 18 m/s and which accelerates for 10 seconds at an acceleration of -2 m/s^2 does indeed experience a displacement of 80 meters. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = 'dv / 'dt 'dv = a * 'dt = -2 m/s^2 * 10 s = - 20 m/s 'dv = 18 - 20 m/s = - 2 m/s vAve = (18 + (-2 m/s) / 2 = 8 m/s 8 m/s traveled for 10 seconds would be 8 m/s * 10 s = 80 m. confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The change in the velocity of the object will be -2 m/s^2 * 10 s = -20 m/s. The object will therefore have a final velocity of 18 m/s - 20 m/s = -2 m/s. Its average velocity will be the average (18 m/s + (-2 m/s) ) / 2 = 8 m/s. An object which travels at an average velocity of 8 m/s for 10 sec will travel 80 meters. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q007. Using the equation vf^2 = v0^2 + 2 a `ds determine the initial velocity of an object which attains a final velocity of 20 meters/second after accelerating uniformly at 2 meters/second^2 through a displacement of 80 meters. Begin by solving the equation for the unknown quantity and show every step. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v0^2 = vf^2 - 2 a 'ds v0 = sqrt((20 m/s)2 - 2(2 m/s^2)(80 m)) = 8.9 m/s confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To solve for the unknown initial velocity v0 we start with vf^2 = v0^2 + 2 a `ds. We first add -2 a `ds to both sides to obtain vf^2 - 2 a `ds = v0^2. We then reverse the right-and left-hand sides and take the square root of both sides, obtaining v0 = +- `sqrt( vf^2 - 2 a `ds). We then substitute the given quantities vf = 20 m/s, `ds = 80 m and a = 3 m/s^2 to obtain v0 = +- `sqrt( (20 m/s)^2 - 2 * 2 m/s^2 * 80 m) = +- `sqrt( 400 m^2 / s^2 - 320 m^2 / s^2) = +- `sqrt(80 m^2 / s^2) = +- 8.9 m/s (approx.). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. We can verify that starting at +8.9 m/s an object which attains a final velocity of 20 m/s while displacing 80 meters must accelerate at 2 m/s^2. In this case the average velocity will be ( 8.9 m/s + 20 m/s) / 2 = 14.5 m/s (approx) and the change in velocity will be 20 m/s - 8.9 m/s = 11.1 m/s. At average velocity 14.5 meters/second the time required to displace the 80 meters will be 80 m / (14.5 sec) = 5.5 sec (approx). The velocity change of 11.1 meters/second in 5.5 sec implies an average acceleration of 11.1 m/s / (5.5 sec) = 2 m/s^2 (approx), consistent with our results. Verify that starting at -8.9 m/s the object will also have acceleration 2 meters/second^2 if it ends up at velocity 20 m/s while displacing 80 meters. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: vAve = (-8.9 m/s + 20 m/s) / 2 = 5.5 m/s 'dt = 'ds / vAve = 80 m / 5.5 m/s = 14.5 s a = 'dv / 'dt = (20 - (-8.9) / 14.5 = 28.9 m/s / 14. 5 s = 1.99 m/s^s = 2.0 m/s^2 confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In this case the average velocity will be ( -8.9 m/s + 20 m/s) / 2 = 5.5 m/s (approx) and the change in velocity will be 20 m/s - (-8.9 m/s) = 28.9 m/s (approx). At average velocity 5.5 meters/second the time required to displace the 80 meters will be 80 m / (5.5 sec) = 14.5 sec (approx). The velocity change of 28.5 meters/second in 14.5 sec implies an average acceleration of 28.5 m/s / (14.5 sec) = 2 m/s^2 (approx), again consistent with our results. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q009. Describe in commonsense terms the motion of the object in this example if its initial velocity is indeed -8.9 m/s. Assume that the object starts at the crossroads between two roads running North and South, and East and West, respectively, and that the object ends up 80 meters North of the crossroads. In what direction does it start out, what happens to its speed, and how does it end up where it does? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*:32; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ********************************************* Question: `q010. An object speeds up from 10 m/s to 20 m/s, accelerating uniformly and traveling 60 meters during this interval. Specify which of the quantities v_0, v_f, aAve, `ds and `dt are given, and specify the value of each. Specify which of the four equations of uniformly accelerated motion include the given three quantities. There is at least one such equation, and there might be two. For each of the equations you specified, identify the quantity for which the value is not given. Then symbolically solve the equation for each of these quantities, showing the steps of your algebra. Substitute the three given quantities into your solution, and simplify. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v0 = 10 m/s vf = 20 m/s 'ds = 60 m vAve = (10 m/s + 20 m/s) / 2 = 15 m/s 'dt = 'ds / vAve = 60 m / 15 m/s = 4 s aAve = 'dv / 'dt = (20 m/s - 10 m/s) / 4 s = 2.5 m/s^2