#$&* course Mth 151 003. `Query 3
.............................................
Given Solution: `a**Z' = {a,g}, the set of all elements of the universal set not in Z. Y ^ Z' = {a}, since a is the only element common to both Y and Z'. So (Y ^ Z') U X = {a, c, e, g}, the set of all elements which lie in at least one of the sets (Y ^ Z') U X. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): After reworking it I understand why is {a,c,e,g} I wanted to include b because Y had it in it. But I realized that that symbol ^ means what they both have in common and that is a ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the intersection of the two sets Y and Z' YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The intersection of the two sets Y and Z is {a} confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a**Z' = {a,g}, the set of all elements of the universal set not in Z. Y ^ Z' = {a}, since a is the only element common to both Y and Z'.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Sorry I am not sure what the answer is. I put {a}. I do understand that Z = {a,g} and Y = {a,b,c} so they both have a in common; which should be the intersection.
.............................................
Given Solution: `a** a description, not using a lot of set-theoretic terms, of (A ^ B' ) U (B ^ A') would be, all the elements that are in A and not in B, or that are not in A and are in B Or you might want to say something like 'elements which are in A but not B OR which are in B but not A'. STUDENT SOLUTION WITH INSTRUCTOR COMMENT:everything that is in set A and not in set B or everything that is in set B and is not in set A. INSTRUCTOR COMMENT: I'd avoid the use of 'everything' unless the word is necessary to the description. Otherwise it's likely to be misleading. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I got it right but instead of using the word or I just started a new sentence. Does it need to be stated using or or was it okay the way I wrote it????? Self-critique Rating:
.............................................
Given Solution: `a** This conclusion is contradicted by many examples, including the one of the dark-haired and bright-eyed people in the q_a_. Basically n(A U B) isn't equal to n(A) + n(B) if there are some elements which are in both sets--i.e., in the intersection. MORE DETAIL: The statement can be either true or false, depending on the sets A and B; it is not always true. The statement n(A U B) = n(A)+n(B) means that the number of elements in A U B is equal to the sum of the number of elements in A and the number of elements in B. The statement would be true for A = { c, f } and B = { a, g, h} because A U B would be { a, c, f, g, h} so n(A U B) = 5, and n(A) + n(B) = 2 + 3 = 5. The statement would not be true for A = { c, f, g } and B = { a, g, h} because A U B would be the same as before so n(AUB) = 5, while n(A) + n(B) = 3 + 3 = 6. The precise condition for which the statement is true is that A and B have nothing in common. In that case n(A U B) = n(A) + n(B). A more precise mathematical way to state this is to say that n(A U B) = n(A) + n(B) if and only if the intersection A ^ B of the two sets is empty. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): So sorry I forgot about how we would be adding them. I understand that it could be either true or false depending how many elements are in the set.
.............................................
Given Solution: `a** X ^ Y = {1,3} so (X ^ Y) ' = {1,3}' = {2, 4, 5}. (X ' U Y ' ) = {2, 4} U {4, 5} = {2, 4, 5} The two resulting sets are equal so a reasonable conjecture would be that (X ^ Y)' = X' U Y'. ** STUDENT QUESTION: Where did the 4 come from? INSTRUCTOR RESPONSE: I believe this problem, as stated in the text, indicates that the universal set is {1, 2, 3, 4, 5}. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I am confused, how you got the answer {1, 3}????? I would think that would be {4} because that is what the two have in common using the universal. Or should it of only been between X and Y???? Which I see how you would of gotten the {1, 3}
.............................................
Given Solution: `a** (A X B) = {(3,6),(3,8),(6,6),(6,8),(9,6),(9,8),(12,6), (12,8)} (B X A) = (6,3),(6,6),(6,9),(6,12),(8,3),(8,6),(8,9),(8,12)} How is n(A x B) related to n(A) and n(B)? n(S) stands for the number of elements in the set S, i.e., its cardinality. n(A x B) = n(A) * n(B) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I got the answer right. I actually understand this part of the chapter. Wish the rest would be this easy. Self-critique Rating:
.............................................
Given Solution: `a** everything in A and everything in B would be shaded. The rest of the universal set (the region outside A and B but still in the rectangle) wouldn't be. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I got this right, but I did not include that the rectangle that the two circles are in are not to be shaded. Self-critique Rating: ********************************************* Question: `qQuery 2.3.100 Shade (A' ^ B) ^ C YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I think that the rectangle would be shaded as A, and the circle of B and C would be shaded. The circle A would not be shaded. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** you would have to shade every region that lies outside of A and also inside B and also inside C. This would be the single region in the overlap of B and C but not including any part of A. Another way to put it: the region common to B and C, but not including any of A ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I believe that I got this one right too. I didnt include the fact that the part of A circle would not be included. This would be the part of the circle that overlaps with the A circle. Self-critique Rating: ********************************************* Question: `qQuery 2.3.108. Describe the shading of the set (A ^ B)' U C. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The shaded part would be everything but where circle A and B overlap each other. You would also have the circle of C shaded in but not including in the overlapping with A and B confidence rating #$&*:: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** All of C would be shaded because we have a union with C, which will include all of C. Every region outside A ^ B would also be shaded. A ^ B is the 'overlap' region where A and B meet, and only this 'overlap' would not be part of (A ^ B) '. The 'large' parts of A and B, as well as everything outside of A and B, would therefore be shaded. Combining this with the shading of C the only the part of the diagram not shaded would be that part of the 'overlap' of A and B which is not part of C. ** STUDENT QUESTION I think I understand because the was outside the ( ) then only the answer to A^B would be prime. And so my answer is wrong to the extent that the larger regions of A &B would also be shaded, but had it been (AUB) no part of either A or B would have been Shaded? INSTRUCTOR RESPONSE Exactly. Very good question, which you answered very well. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I am thinking I said exactly what you said; you might want to read it for sure. Self-critique Rating: ********************************************* Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (A^B)^C confidence rating #$&*: ********************************************* Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (A^B)^C confidence rating #$&*: #(*!