#$&* course Mth163 query_6 *********************************************
.............................................
Given Solution: ** STUDENT RESPONSE: Linear is y=mx+b Quadratic is y=ax^2 + bx +c Exponential is y= A*2^ (kx)+c Power = A (x-h)^p+c INSTRUCTOR COMMENTS: These are the generalized forms. The basic functions are y = x, y = x^2, y = 2^x and y = x^p. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Question: `qFor a function f(x), what is the significance of the function A f(x-h) + k and how does its graph compare to that of f(x)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& This is an exponential function. Difference quotient. &&& confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT RESPONSE: A designates the x strectch factor while h affects a y shift & k affects an x shift INSTRUCTOR COMMENTS: k is the y shift for a simple enough reason -- if you add k to the y value it raises the graph by k units. h is the x shift. The reason isn't quite as simple, but not that hard to understand. It's because when x is replaced by x - h the y values on the table shift 'forward' by h units. A is a multiplier. When all y values are multiplied by A that moves them all A times as far from the x axis, which is what causes the stretch. Thus A f(x-h) + k is obtained from f(x) by vertical stretch A, horizontal shift h and vertical shift k. The two aren't the same, but of course they're closely related. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): K is shift, A is stretch (move A times as far away from x axis) ------------------------------------------------ Self-critique Rating:2 ********************************************* Question: `q query introduction to rates and slopes, problem 1 ave vel for function depth(t) = .02t^2 - 5t + 150 give the average rate of depth change with respect to clock time from t = 20 to t = 40 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& 2 &&& confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** depth(20) = .02(20^2) - 5(20) + 150 = 58 depth(40) = .02(40^2) - 5(40) + 150 = -18 change in depth = depth(40) - depth(20) = -18 - 58 = -76 change in clock time = 40 - 20 = 20. Ave rate of depth change with respect to clock time = change in depth / change in clock time = -76 / 20 = -3.8 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I though we took the absolute value??? Otherwise I got exactly what you did taking abs value away. ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is the average rate of depth change with respect to clock time from t = 60 to t = 80? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& -10 &&& confidence rating #$&*:1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** depth(60) = .02(60^2) - 5(60) + 150 = -78 depth(80) = .02(80^2) - 5(80) + 150 = -122 change in depth = depth(80) - depth(60) = -122 - (-78) = -44 change in clock time = 40 - 20 = 20. Ave rate of depth change with respect to clock time = change in depth / change in clock time = -44 / 20 = -2.2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Im finding change, not slope! So this would be absolute right??? (-78)-(-122)=-44 Change in clock time (t)= 40-20=20 ------------------------------------------------ Self-critique Rating:3
.............................................
Given Solution: ** The graph is a parabola. y = .02t^2 - 5t + 150 has vertex at x = -b / (2a) = -(-5) / (2 * .02) = 125, at which point y = .02 (125^2) - 5(125) + 150 = -162.5. The graph opens upward, intercepting the x axis at about t = 35 and t = 215. Up to t = 125 the graph is decreasing at a decreasing rate. That is, it's decreasing but the slopes, which are negative, are increasing toward 0.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): We can use AOS to find vertex to describe our graphs, also to find other points to make our graph. Does AOS always give us our vertex value??? ------------------------------------------------ Self-critique Rating:3
.............................................
Given Solution: ** Rates are -3.8, -3 and -2.2 for the three intervals (20,40), (40,60) and (60,80). For each interval of `dt = 20 the rate changes by +.8. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): You meant for me to use the questions above, using (20, 40), (40, 60) and (60, 80) I do not understand how you found your rates. Can you please go through the process??? ------------------------------------------------ Self-critique Rating:
.............................................
Given Solution: ** The 1-sec interval centered at t = 50 is 49.5 < t < 50.5. For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(50.5) - depth(49.5)]/(50.5 - 49.5) = -3 / 1 = -3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): How did you get -3??? I see what I did wrong, added the five where I should have subtracted. ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qwhat is the average rate of change with respect to clock time for the six-second time interval centered at the midpoint. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& There would be 3 on each side of our midpoint to the left and right so fifty plus three equals fifty-three and fifty minus three equals forty-seven . Plug these in for Y=.02(53^2)-5(53)+150=-58.82 Y=.02(47^2)-5(47)+150=-40.82 -58.82-(-40.82)=-18 53-47=6 -18/6=-3 &&& confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The 6-sec interval centered at t = 50 is 47 < t < 53. For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(53) - depth(47)]/(53 - 47) = -18 / 6 = -3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat did you observe about your two results? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& Both of my results ended in negative three, so my graph would be linear??? &&& confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The two rates match each other, and they also match the average rate for the interval 40 < t < 60, which is also centered at t = 50. For a quadratic function, and only for a quadratic function, the rate is the same for all intervals having the same midpoint. This is a property unique to quadratic functions. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The average rate of the intervals has the same midpoint which is t= 50 ------------------------------------------------ Self-critique Rating:2
.............................................
Given Solution: f(50.5) = 38.03048331 deg f(49.5) = 38.49000231 deg The change is -0.4595190014 deg. The change in clock time is 1 second. So the average rate is • ave rate = change in temperature / change in clock time = -.4595 deg / (1 sec ) = -.4595 deg/sec. STUDENT RESPONSE: .46 degrees/sec INSTRUCTOR COMMENT: More precisely -.4595 deg/sec, and this does not agree exactly with the result for the 6-second interval. Remember that you need to look at enough significant figures to see if there is a difference between apparently identical results.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I should have included average rate=change Temp/change in t=-4595 deg/sec ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `qwhat is the average rate of change for the six-second time interval centered at the midpoint. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& = 75(2^(-.05(53))) + 25 =36.949 = 75(2^(-.05(47))) + 25 =39.711 36.949-39.258= -2.762 Average rate of the change in temperature/ change in time= -2.762 deg/sec &&& confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: STUDENT RESPONSE: .46 degrees/minute INSTRUCTOR COMMENT: The 1- and 6-second results might possibly be the same to two significant figures, but they aren't the same. Be sure to recalculate these according to my notes above and verify this for yourself. The average rate for the 6-second interval is -.4603 deg/sec. It differs from the average rate -.4595 deg/min, calculated over the 1-second interval, by more than -.0008 deg/sec. This differs from the behavior of the quadratic. For a quadratic that the results for all intervals centered at the same point will all agree. This is not the case for the present function, which is exponential. Exact agreement is a characteristic of quadratic functions, and of no other type. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Can you tell me where I went wrong??? ------------------------------------------------ Self-critique Rating:0
Be sure to include the entire document, including my notes.
*@