#$&* course Mth163 009.
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 1.1 x1 + .8) and the coordinates of the x = x2 point are ( x2, 1.1 x2 + .8). The rise between the two points is therefore rise = (1.1 x2 + .8) - (1.1 x1 + .8) = 1.1 x2 + .8 - 1.1 x1 - .8 = 1.1 x2 - 1.1 x1. The run is run = x2 - x1. The slope is therefore (1.1 x2 - 1.1 x1) / (x2 - x1) = 1.1 (x2 - x1) / (x2 - x1) = 1.1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): [(1.1(x2)+.8)-(1.1(x1)+.8]/x2-x1 The .8 cancels So now you have left [(1.1(x2) -1.1(x1)]/x2-x1 Can take 1.1 out of both the x2 and x1 on the numerator The x2-x1/x2-x1=1, you have your 1.1 left over multiply that by one and your finial answer is 1.1 ------------------------------------------------ Self-critique rating:3 ********************************************* Question: `q002. For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1? What are the coordinates of the x = x2 point, in terms of the symbol x2? What therefore is the rise between these two points, and what is the run? What is the average slope of the graph between these two points? Be sure to simplify your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& y = 3.4 *x1 + 7 y = 3.4 *x2+ 7 Rise: [(3.4(x2)+7)-(3.4(x1)+7)]/Run:x2-x1 Seven cancels out Take the 3.4 out of top [3.4(x2-x1)]/x2-x1 =3.4 &&& confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7). The rise between the two points is therefore rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1. The run is run = x2 - x1. The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:OK ********************************************* Question: `q002. For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1? What are the coordinates of the x = x2 point, in terms of the symbol x2? What therefore is the rise between these two points, and what is the run? What is the average slope of the graph between these two points? Be sure to simplify your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& y = 3.4 *x1 + 7 y = 3.4 *x2+ 7 Rise: [(3.4(x2)+7)-(3.4(x1)+7)]/Run:x2-x1 Seven cancels out Take the 3.4 out of top [3.4(x2-x1)]/x2-x1 =3.4 &&& confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7). The rise between the two points is therefore rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1. The run is run = x2 - x1. The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:OK #*&! ********************************************* Question: `q002. For the function y = 3.4 x + 7, what are the coordinates of the x = x1 point, in terms of the symbol x1? What are the coordinates of the x = x2 point, in terms of the symbol x2? What therefore is the rise between these two points, and what is the run? What is the average slope of the graph between these two points? Be sure to simplify your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: &&& y = 3.4 *x1 + 7 y = 3.4 *x2+ 7 Rise: [(3.4(x2)+7)-(3.4(x1)+7)]/Run:x2-x1 Seven cancels out Take the 3.4 out of top [3.4(x2-x1)]/x2-x1 =3.4 &&& confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In terms of the symbol x1 the coordinates of the x = x1 point are ( x1, 3.4 x1 + 7) and the coordinates of the x = x2 point are ( x2, 3.4 x2 + 7). The rise between the two points is therefore rise = (3.4 x2 + 7) - (3.4 x1 + 7) = 3.4 x2 + 7 - 3.4 x1 - 7 = 3.4 x2 - 3.4 x1. The run is run = x2 - x1. The slope is therefore (3.4 x2 - 3.4 x1) / (x2 - x1) = 3.4 (x2 - x1) / (x2 - x1) = 3.4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:OK #*&!#*&!