#$&* course Phy 122 If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm
.............................................
Given Solution: The maximum possible efficiency is (T_h - T_c) / T_h, where T_h and T_c are the absolute max and min operating temperatures. T_h is (580 + 273)K = 853 K and T_c is (380 + 273) K = 653 K, so the maximum theoretical efficiency is max efficiency = (T_h - T_c) / T_h = (853 K - 653 K) / (853 K) = .23, approx. This means that the work done by this engine will be not greater than about 23% of the thermal energy that goes into it. Your Self-Critique:ok Your Self-Critique Rating:ok ********************************************* Question: query gen phy problem 15.26 source 550 C -> Carnot eff. 28%; source temp for Carnot eff. 35%? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Carnot efficiency is eff = (Th - Tc) / Th. Solving this for Tc we multiply both sides by Th to get eff * Th = Th - Tc so that Tc = Th - eff * Th = Th ( 1 - eff). We note that all temperatures must be absolute so we need to work with the Kelvin scale (adding 273 C to the Celsius temperature to get the Kelvin temperature) If Th = 550 C = 823 K and efficiency is 30% then we have Tc =823 K * ( 1 - .28) = 592 K. Now we want Carnot efficiency to be 35% for this Tc. We solve eff = (Th - Tc) / Th for Th: Tc we multiply both sides by Th to get eff * Th = Th - Tc so that eff * Th - Th = -Tc and Tc = Th - eff * Th or Tc = Th ( 1 - eff) and Th = Tc / (1 - eff). If Tc = 576 K and eff = .35 we get Th = 592 K / ( 1 - .35 ) = 592 C / .6 = 912 K, approx. This is (912 - 273) C = 639 C. ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: univ phy problem 20.45 11th edition 20.44 (18.40 10th edition) ocean thermal energy conversion 6 C to 27 C At 210 kW, what is the rate of extraction of thermal energy from the warm water and the rate of absorption by the cold water? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** work done / thermal energy required = .07 so thermal energy required = work done / .07. Translating directly to power, thermal energy must be extracted at rate 210 kW / .07 = 3,000 kW. The cold water absorbs what's left after the 210 kW go into work, or 2,790 kW. Each liter supplies 4186 J for every degree, or about 17 kJ for the4 degree net temp change of the water entering and exiting the system. Needing 3,000 kJ/sec this requires about 180 liters / sec, or about 600 000 liters / hour (also expressible as about 600 cubic meters per hour). Comment from student: To be honest, I was surprised the efficiency was so low. Efficiency is low but the energy is cheap and environmental impact in the deep ocean can be negligible so the process can be economical. ** Your Self-Critique: Your Self-Critique Rating: " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!