#$&* course Phy 122 If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution.If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it.This response should be given, based on the work you did in completing the assignment, before you look at the given solution.
.............................................
Given Solution: `q** As wavelength decreases you can fit more half-waves onto the string.You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. FOR A STRING FREE AT ONE END: The wavelengths of the first few harmonics are found by the node - antinode distance between the ends. The first node correspondsto 1/4 wavelength. The second harmonic is from node to antinode to node to antinode, or 4/3. the third and fourth harmonics would therefore be 5/4 and 7/4 respectively. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: Ok ********************************************* Question:`q****Given the wavelengths of the first few harmonics and the velocity of a wave disturbance in the string, how do we determine the frequencies of the first few harmonics? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength.The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment.This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: Ok ********************************************* Question:`q****Given the tension and mass density of a string how do we determine the velocity of the wave in the string? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We divide tension by mass per unit length: v = sqrt ( tension / (mass/length) ). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** We divide tension by mass per unit length: v = sqrt ( tension / (mass/length) ). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: Ok ********************************************* Question:`q****gen phyexplain in your own words the meaning of the principal of superposition YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** the principle of superposition tells us that when two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question:`q****gen phywhat does it mean to say that the angle of reflection is equal to the angle of incidence? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular ** YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `auery univ phy problem 15.48 (19.32 10th edition) y(x,t) = .75 cm sin[ `pi ( 250 s^-1 t + .4 cm^-1 x) ] What are the amplitude, period, frequency, wavelength and speed of propagation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** y(x, t) = A sin( omega * t + k * x), where amplitude is A, frequency is omega / (2 pi), wavelength is 2 pi / x and velocity of propagation is frequency * wavelength.Period is the reciprocal of frequency. For A = .75 cm, omega = 250 pi s^-1, k = .4 pi cm^-1 we have A=.750 cm frequency is f = 250 pi s^-1 / (2 pi) = 125 s^-1 = 125 Hz. period is T = 1/f = 1 / (125 s^-1) = .008 s wavelength is lambda = (2 pi / (.4 * pi cm^-1)) = 5 cm speed of propagation is v = frequency * wavelength = 125 Hz * 5 cm = 625 cm/s. Note that v = freq * wavelength = omega / (2 pi) * ( 2 pi ) / k = omega / k. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question:`q****Describe your sketch for t = 0 and state how the shapes differ at t = .0005 and t = .0010. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Basic precalculus:For any function f(x) the graph of f(x-h) is translated `dx = h units in the x direction from the graph of y = f(x). The graph of y = sin(k * x - omega * t) = sin(k * ( x - omega / k * t) ) is translated thru displacement `dx = omega / k * t relative to the graph of sin(k x). At t=0, omega * t is zero and we have the original graph of y = .75 cm * sin( k x).The graph of y vs. x forms a sine curve with period 2 pi / k, in this case 2 pi / (pi * .4 cm^-1) = 5 cm which is the wavelength.A complete cycle occurs between x = 0 and x = 5 cm, with zeros at x = 0 cm, 2.5 cm and 5 cm, peak at x = 1.25 cmand 'valley' at x = 3.75 cm. At t=.0005, we are graphing y = .75 cm * sin( k x + .0005 omega), shifted -.0005 * omega / k = -.313 cm in the x direction.The sine wave of the t=0 function y = .75 cm * sin(kx) is shifted -.313 cm, or .313 cm left so now the zeros are at -.313 cm and every 2.5 cm to the right of that, with the peak shifted by -.313 cm to x = .937 cm. At t=.0010, we are graphing y = .75 cm * sin( k x + .0010 omega), shifted -.0010 * omega / k = -.625 cm in the x direction.The sine wave of the t = 0 function y = .75 cm * sin(kx) is shifted -.625 cm, or .625 cm left so now the zeros are at -.625 cm and every 2.5 cm to the right of that, with the peak shifted by -.625 cm to x = +.625 cm. The sequence of graphs clearly shows the motion of the wave to the left at 625 cm / s. ** Self-critique (if necessary) ------------------------------------------------ Self-critique Rating: ********************************************* Question:`q****If mass / unit length is .500 kg / m what is the tension? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Velocity of propagation is v = sqrt(T/ (m/L) ).Solving for T: v^2 = T/ (m/L) v^2*m/L = T T = (6.25 m/s)^2 * 0.5 kg/m so T = 19.5 kg m/s^2 = 19.5 N approx. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question:`q****What is the average power? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The text gives the equation Pav = 1/2 sqrt( m / L * F) * omega^2 * A^2 for the average power transferred by a traveling wave. Substituting m/L, tension F, angular frequency omeage and amplitude A into this equation we obtain Pav = 1/2 sqrt ( .500 kg/m * 195 N) * (250 pi s^-1)^2 * (.0075 m)^2 = .5 sqrt(98 kg^2 m / (s^2 m) ) * 62500 pi^2 s^-2 * .000054 m^2 = .5 * 9.9 kg/s * 6.25 * 10^4 pi^2 s^-2 * 5.4 * 10^-5 m^2 = 17 kg m^2 s^-3 = 17 watts, approx.. The arithmetic here was done mentally so double-check it. The procedure itself is correct. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!