initial problems

Student Name: assignment #006 006. Physics

......!!!!!!!!...................................

18:00:54 `q001. There are two parts to this problem. Reason them out using common sense.

If the speed of an automobile changes by 2 mph every second, then how long will it take the speedometer to move from the 20 mph mark to the 30 mph mark?

Given the same rate of change of speed, if the speedometer initially reads 10 mph, what will it read 7 seconds later?

......!!!!!!!!...................................

RESPONSE --> if the speed of an auto changes by 2mph every second it will take 5 seconds for the speedometer to move from 20 to 30 mph mark.

At the same rate of speed the speedometer which initally reads 10 mph will read 24 mph 7 seconds later

.................................................

......!!!!!!!!...................................

18:02:29 It will take 5 seconds to complete the change. 30 mph - 20 mph = 10 mph change at 2 mph per second (i.e., 2 mph every second) implies 5 seconds to go from 20 mph to 30 mph

Change in speed is 2 mph/second * 7 seconds = 14 mph Add this to the initial 10 mph and the speedometer now reads 24 mph.

......!!!!!!!!...................................

RESPONSE --> I did not indicate how I came to the answer.

.................................................

......!!!!!!!!...................................

18:04:43 `q002. An automobile traveling down a hill passes a certain milepost traveling at a speed of 10 mph, and proceeds to coast to a certain lamppost further down the hill, with its speed increasing by 2 mph every second. The time required to reach the lamppost is 10 seconds. It then repeats the process, this time passing the milepost at a speed of 20 mph.

Will the vehicle require more or less than 10 seconds to reach the lamppost?

Since its initial speed was 10 mph greater than before, does it follow that its speed at the lamppost will be 10 mph greater than before?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

18:06:46 If it starts coasting down the same section of road at 20 mph, and if velocity changes by the same amount every second, the automobile should always be traveling faster than if it started at 10 mph, and would therefore take less than 10 seconds.

The conditions here specify equal distances, which implies less time on the second run. The key is that, as observed above, the automobile has less than 10 seconds to increase its speed. Since its speed is changing at the same rate as before and it has less time to change it will therefore change by less.

......!!!!!!!!...................................

RESPONSE --> By velocity changing does that mean because the car was traveling down hill it would go faster?

The car passes a certain lightpost at the given speed, then speeds up as it coasts downhill.

.................................................

......!!!!!!!!...................................

18:10:08 `q003. The following example shows how we can measure the rate at which an automobile speeds up: If an automobile speeds up from 30 mph to 50 mph as the second hand of a watch moves from the 12-second position to the 16-second position, and its speed changes by 20 mph in 4 seconds. This gives us an average rate of velocity change equal to 20 mph / 4 seconds = 5 mph / second.

We wish to compare the rates at which two different automobiles increase their speed:

Which automobile speeds up at the greater rate, one which speeds up from 20 mph to 30 mph in five seconds or one which speeds up from 40 mph to 90 mph in 20 seconds?

......!!!!!!!!...................................

RESPONSE --> the auto which speeds up to 30 from 20 in five sceonds is at a greater rate because 30-20=10/5=2 and 90-40=50/20=2.5

.................................................

......!!!!!!!!...................................

18:11:30 The first automobile's speed changes from 20 mph to 30mph, a 10 mph difference, which occurs in 5 seconds. So the rate of chage in 10 mph / (5 sec) = 2 mph / sec. = rate of change of 2 mph per second. }{The second automobile's speed changes from 40 mph to 90 mph, a 50 mph difference in 20 seconds so the rate of change is 50 mph / (20 sec) = 2.5 mph per second. Therefore, the second auto is increasing its velocity ar a rate which is .5 mph / second greater than that of the first.

......!!!!!!!!...................................

RESPONSE --> I thought 2mph was faster than 2.5mph as an increase.

If you are making $20 per hour, are you making money at a greater or lesser rate than someone making $25 per hour?

The same principle applies here, but it's velocity that's accumulating rather than money.

.................................................

......!!!!!!!!...................................

18:18:56 4. If an automobile of mass 1200 kg is pulled by a net force of 1800 Newtons, then the number of Newtons per kg is 1800 / 1200 = 1.5. The rate at which an automobile speeds up is determined by the net number of Newtons per kg. Two teams pulling on ropes are competing to see which can most quickly accelerate their initially stationary automobile to 5 mph. One team exerts a net force of 3000 Newtons on a 1500 kg automobile while another exerts a net force of 5000 Newtons on a 2000 kg automobile.

Which team will win and why?

If someone pulled with a force of 500 Newtons in the opposite direction on the automobile predicted to win, would the other team then win?

......!!!!!!!!...................................

RESPONSE --> the team with 5000 newtons will win because they the rate of thier pull is 2.5 and the rate of the 3000 newtons is 2. The teams would tie if someone pulled witha force of 500newtons in the opposite direction.

.................................................

......!!!!!!!!...................................

18:20:11 The first team's rate is 3000 Newtons divided by 1500 kg or 2 Newtons per kg, while the second team's rate is 5000 Newtons divided by 2000 kg or 2.5 Newtons per kg. The second team therefore increases velocity more quickly. Since both start at the same velocity, zero, the second team will immediately go ahead and will stay ahead.

The second team would still win even if the first team was hampered by the 500 Newton resistance, because 5000 Newtons - 500 Newtons = 4500 Newtons of force divided by 2000 kg of car gives 2.25 Newtons per kg, still more than the 2 Newtons / kg of the first team

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

O.K.

.................................................

......!!!!!!!!...................................

18:21:29 `q005. Both the mass and velocity of an object contribute to its effectiveness in a collision. If a 250-lb football player moving at 10 feet per second collides head-on with a 200-lb player moving at 20 feet per second in the opposite direction, which player do you precidt will be moving backward immediately after the collision, and why?

......!!!!!!!!...................................

RESPONSE --> The 200-lb player is moving at a higher velocity and will move the heaver player backward first.

.................................................

......!!!!!!!!...................................

18:22:10 Greater speed and greater mass both provide advantages. In this case the player with the greater mass has less speed, so we have to use some combination of speed and mass to arrive at a conclusion.

It turns out that if we multiply speed by mass we get the determining quantity, which is called momentum. 250 lb * 10 ft/sec = 2500 lb ft / sec and 200 lb * 20 ft/sec = 4000 lb ft / sec, so the second player will dominate the collision.

In this course we won't use pounds as units, and in a sense that will become apparent later on pounds aren't even valid units to use here. However that's a distinction we'll worry about when we come to it.

......!!!!!!!!...................................

RESPONSE --> O.K.

Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the given solution, and if necessary asking specific questions.

.................................................

......!!!!!!!!...................................

18:23:14 `q006. Two climbers eat Cheerios for breakfast and then climb up a steep mountain as far as they can until they use up all their energy from the meal. All other things being equal, who should be able to climb further up the mountain, the 200-lb climber who has eaten 12 ounces of Cheerios or the 150-lb climber who has eaten 10 ounces of Cheerios?

......!!!!!!!!...................................

RESPONSE --> The 150 lb climber having less weight to pull will be able to clomb farther .

You need to explain your reasoning.

.................................................

......!!!!!!!!...................................

18:23:42 The comparison we make here is the number of ounces of Cheerios per pound of body weight. We see that the first climber has 12 oz / (200 lb) = .06 oz / lb of weight, while the second has 10 0z / (150 lb) = .067 oz / lb. The second climber therefore has more energy per pound of body weight.

It's the ounces of Cheerios that supply energy to lift the pounds of climber. The climber with the fewer pounds to lift for each ounce of energy-producing Cheerios will climb further.

......!!!!!!!!...................................

RESPONSE --> O.k.

.................................................

......!!!!!!!!...................................

18:28:31 `q007. Two automobiles are traveling up a long hill with an steepness that doesn't change until the top, which is very far away, is reached. One automobile is moving twice as fast as the other. At the instant the faster automobile overtakes the slower their drivers both take them out of gear and they coast until they stop.

Which automobile will take longer to come to a stop? Will that automobile require about twice as long to stop, more than twice as long or less than twice as long?

Which automobile will have the greater average coasting velocity? Will its average coasting velocity by twice as great as the other, more than twice as great or less than twice as great?

Will the distance traveled by the faster automobile be equal to that of the slower, twice that of the slower or more than twice that of the slower?

......!!!!!!!!...................................

RESPONSE --> the auto moving 2xas fast will take longer to stop. It will not take 2x as long to stop since they both took them out of gear and coasted. the faster auto will have greater average coasting velocity the average coasting velocity will of the faster auto will be less than 2x as great. The didstance of the faster auto will be equal to that of the slower.

.................................................

......!!!!!!!!...................................

18:30:12 It turns out that, neglecting air resistance, since the slope is the same for both, both automobiles will change velocity at the same rate. So in this case the second would require exactly twice as long.

If you include air resistance the faster car experiences more so it actually takes a bit less than twice as long as the slower.

For the same reasons as before, and because velocity would change at a constant rate (neglecting air resistance) it would be exactly twice as great if air resistance is neglected.

Interestingly if it takes twice as much time and the average velocity is twice as great the faster car travels four times as far.

If there is air resistance then it slows the faster car down more at the beginning than at the end and the average velocity will be a bit less than twice as great and the coasting distance less than four times as far.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

Wow, I didn;t comprehend the rate of ait resistance.

.................................................

......!!!!!!!!...................................

18:31:39 `q008. When a 100 lb person hangs from a certain bungee cord, the cord stretches by 5 feet beyond its initial unstretched length. When a person weighing 150 lbs hangs from the same cord, the cord is stretched by 9 feet beyond its initial unstretched length. When a person weighing 200 lbs hangs from the same cord, the cord is stretched by 12 feet beyond its initial unstretched length.

Based on these figures, would you expect that a person of weight 125 lbs would stretch the cord more or less than 7 feet beyond its initial unstretched length?

......!!!!!!!!...................................

RESPONSE --> I think 7 feet is accurate since it only stretches by 4 feet with a 25lb change in weight.

.................................................

......!!!!!!!!...................................

18:33:27 From 100 lbs to 150 lbs the stretch increased by 4 feet, from 150 lbs to 200 lbs the increase was only 3 feet. Thus it appears that at least in the 100 lb - 200 lb rands each additional pound results in less increase in length than the last and that there would be more increase between 100 lb and 125 lb than between 125 lb and 150 lb. This leads to the conclusion that the stretch for 125 lb would be more than halfway from 5 ft to 9 ft, or more than 7 ft.

A graph of stretch vs. weight would visually reveal the nature of the nonlinearity of this graph and would also show that the stretch at 125 lb must be more than 7 feet (the graph would be concave downward, or increasing at a decreasing rate, so the midway stretch would be higher than expected by a linear approximation).

......!!!!!!!!...................................

RESPONSE --> A graph would be helpful to visuaize the changes in feet by additional pounds.

.................................................

......!!!!!!!!...................................

18:36:42 `q009. When given a push of 10 pounds, with the push maintained through a distance of 4 feet, a certain ice skater can coast without further effort across level ice for a distance of 30 feet. When given a push of 20 pounds (double the previous push) through the same distance, the skater will be able to coast twice as far, a distance of 60 feet. When given a push of 10 pounds for a distance of 8 feet (twice the previous distance) the skater will again coast a distance of 60 feet.

The same skater is now accelerated by a sort of a slingshot consisting of a bungee-type cord slung between two posts in the ice. The cord, as one might expect, exerts greater and greater force as it is pulled back further and further. Assume that the force increases in direct proportion to pullback (ie.g., twice the pullback implies twice the force).

When the skater is pulled back 4 feet and released, she travels 20 feet. When she is pulled back 8 feet and released, will she be expected to travel twice as far, more than twice as far or less than twice as far as when she was pulled back 4 feet?

......!!!!!!!!...................................

RESPONSE --> the skater will travel twice as far when pulled back 8 feet.

.................................................

......!!!!!!!!...................................

18:38:08 The distance through which the force acts will be twice as great, which alone would double the distance; because of the doubled pullback and the linear proportionality relationship for the force the average force is also twice as great, which alone would double the distance. So we have to double the doubling; she will go 4 times as far

......!!!!!!!!...................................

RESPONSE --> I neglected to multiply the force times the distance.

.................................................

......!!!!!!!!...................................

18:44:13 `q010. Two identical light bulbs are placed at the centers of large and identically frosted glass spheres, one of diameter 1 foot and the other of diameter 2 feet.

To a moth seeking light from half a mile away, unable to distinguish the difference in size between the spheres, will the larger sphere appear brighter, dimmer or of the same brightness as the first?

To a small moth walking on the surface of the spheres, able to detect from there only the light coming from 1 square inch of the sphere, will the second sphere appear to have the same brightness as the first, twice the brightness of the first, half the brightness of the first, more than twice the brightness of the first, or less than half the brightness of the first?

......!!!!!!!!...................................

RESPONSE --> The 1 foot glass sphere will appear brighter from futher away because the light does not have as far to travel.

The smaller sphere will have more brightness.

.................................................

......!!!!!!!!...................................

18:45:20 Both bulbs send out the same energy per second. The surface of the second bulb will indeed be dimmer than the first, as we will see below. However the same total energy per second reaches the eye (identically frosted bulbs will dissipate the same percent of the bulb energy) and from a great distance you can't tell the difference in size, so both will appear the same. The second sphere, while not as bright at its surface because it has proportionally more area, does have the extra area, and that exactly compensates for the difference in brightness. Specifically the brightness at the surface will be 1/4 as great (twice the radius implies 4 times the area which results in 1/4 the illumination at the surface) but there will be 4 times the surface area.

Just as a 2' x 2' square has four times the area of a 1' x 1' square, a sphere with twice the diameter will have four times the surface area and will appear 1 / 4 as bright at its surface. Putting it another way, the second sphere distributes the intensity over four times the area, so the light on 1 square inch has only 1 / 4 the illumination.

......!!!!!!!!...................................

RESPONSE --> ok

This also requires a self-critique.

.................................................

......!!!!!!!!...................................

18:48:08 `q011. The water in a small container is frozen in a freezer until its temperature reaches -20 Celsius. The container is then placed in a microwave oven, which proceeds to deliver energy at a constant rate of 600 Joules per second. After 10 seconds the ice is still solid and its temperature is -1 Celsius. After another 10 seconds a little bit of the cube is melted and the temperature is 0 Celsius. After another minute most of the ice is melted but there is still a good bit of ice left, and the ice and water combination is still at 0 Celsius. After another minute all the ice is melted and the temperature of the water has risen to 40 degrees Celsius.

Place the following in order, from the one requiring the least energy to the one requiring the most:

Increasing the temperature of the ice by 20 degrees to reach its melting point. Melting the ice at its melting point. Increasing the temperature of the water by 20 degrees after all the ice melted.

At what temperature does it appear ice melts, and what is the evidence for your conclusion?

......!!!!!!!!...................................

RESPONSE --> melting the ice at its melting point increasing the temp of ice by 20degrees to reach melting point increasing the temp of water by 20degrees after all ice melted. 0degrees celsius appears

What is the basis for your answer? You need to include details.

.................................................

......!!!!!!!!...................................

18:48:39 Since the temperature is the same when a little of the ice is melted as when most of it is melted, melting takes place at this temperature, which is 0 Celsius.

The time required to melt the ice is greater than any of the other times so melting at 0 C takes the most energy. Since we don't know how much ice remains unmelted before the final minute, it is impossible to distinguish between the other two quantities, but it turns out that it takes less energy to increase the temperature of ice than of liquid water.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

18:51:56 `q012. Suppose you are in the center of a long, narrow swimming pool (e.g., a lap pool). Two friends with kickboards are using them to push waves in your direction. Their pushes are synchronized, and the crests of the waves are six feet apart as they travel toward you, with a 'valley' between each pair of crests. Since your friends are at equal distances from you the crests from both directions always reach you at the same instant, so every time the crests reach you the waves combine to create a larger crest. Similarly when the valleys meet you experience a larger valley, and as a result you bob up and down further than you would if just one person was pushing waves at you.

Now if you move a bit closer to one end of the pool the peak from that end will reach you a bit earlier, and the peak from the other end will reach you a little later. So the peaks won't quite be reaching you simultaneously, nor will the valleys, and you won't bob up and down as much. If you move far enough, in fact, the peak from one end will reach you at the same time as the valley from the other end and the peak will 'fll in' the valley, with the result that you won't bob up and down very much.

If the peaks of the approaching waves are each 6 inches high, how far would you expect to bob up and down when you are at the center point?

How far would you have to move toward one end or the other in order for peaks to meet valleys, placing you in relatively calm water?

......!!!!!!!!...................................

RESPONSE --> 3 inches half the height of the peaks of the waves. 3 feet in towards the middle so the peak will meet the valley

.................................................

......!!!!!!!!...................................

18:52:25 If the two 6-inch peaks meet and reinforce one another completely, the height of the 'combined' peak will be 6 in + 6 in = 12 in.

If for example you move 3 ft closer to one end you move 3 ft further from the other and peaks, which are 6 ft apart, will still be meeting peaks. However if you move 1.5 ft the net 'shift' will be 3 ft and peaks will be meeting valleys so you will be in the calmest water.

......!!!!!!!!...................................

RESPONSE --> great I got one right.

.................................................

}ˈسlQbZ~_ Student Name: assignment #006 006. Physics ԫc}ňαm Student Name: assignment #001 001. Rates m缔Cւh଀ Student Name: assignment #001 001. Rates

......!!!!!!!!...................................

21:43:49 `q001. You should copy and paste these instructions to a word processor for reference. However you can always view them, as well as everything else that has appeared in this box, by clicking the 'Display Everything' button.

1. For the next question or answer, you click on 'Next Question / Answer' button above the box at top left until a question has been posed. Once a question has been posed you are to answer before you click again on this button.

2. Before clicking for an answer, type your best answer to the current question into the box to the right, then clip on the 'Enter Answer' button.

3. After entering your answer you will click on 'Next Question / Answer' to view the answer to the question. Do not tamper with the information displayed in the left-hand box.

4. If your answer was incorrect, incomplete or would otherwise require revision, you will enter a self-critique. If you learned something from the answer, you need to restate it in your own words in order to reinforce your learning. If there is something you feel you should note for future reference, you should make a note in your own words. Go to the response box (the right-hand box) and type in a self-critique and/or notes, as appropriate. Do not copy and paste anything from the left-hand box, since that information will be saved in any case.

5. If you wish to save your response to your Notes file you may choose to click on the 'Save As Notes' button rather than the 'Enter Answer' button. Doing so will save your work for your future reference. Your work will be saved in a Notes file in the c:\vhmthphy folder. The title of the Notes file will also include the name you gave when you started the program.

6. After clicking either the 'Enter Response' or the 'Save as Notes' button, click on 'Next Question / Answer' and proceed in a similar manner.

In the right-hand box briefly describe your understanding of these instructions, then click 'Enter Answer'.

......!!!!!!!!...................................

RESPONSE --> I understand the directions for q-a rates to be like the other q a. after choosing next ?/ answer read, then put cursor in right side and proceed to answer ? to best of ability then click enter response.

.................................................

......!!!!!!!!...................................

21:44:00 06-03-2006 21:44:00 Your answer has been noted. Enter 'ok' in the Response Box and click on Enter Response, then click on Next Question/Answer for the first real question.

......!!!!!!!!...................................

NOTES -------> ok

.......................................................!!!!!!!!...................................

21:44:03 Your answer has been noted. Enter 'ok' in the Response Box and click on Enter Response, then click on Next Question/Answer for the first real question.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:44:40 `q002. Note that there are 10 questions in this assignment. The questions are of increasing difficulty--the first questions are fairly easy but later questions are very tricky. The main purposes of these exercises are to refine your thinking about rates, and to see how you process challenging information. Continue as far as you can until you are completely lost. Students who are prepared for the highest-level math courses might not ever get lost.

If you make $50 in 5 hr, then at what rate are you earning money?

......!!!!!!!!...................................

RESPONSE --> 10.00 per hour

.................................................

......!!!!!!!!...................................

21:45:52 The rate at which you are earning money is the number of dollars per hour you are earning. You are earning money at the rate of 50 dollars / (5 hours) = 10 dollars / hour. It is very likely that you immediately came up with the $10 / hour because almosteveryone is familiar with the concept of the pay rate, the number of dollars per hour. Note carefully that the pay rate is found by dividing the quantity earned by the time required to earn it. Time rates in general are found by dividing an accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> rate / hours = per hour rate.

.................................................

......!!!!!!!!...................................

21:46:55 `q003.If you make $60,000 per year then how much do you make per month?

......!!!!!!!!...................................

RESPONSE --> $5,000.00 per month

.................................................

......!!!!!!!!...................................

21:47:12 Most people will very quickly see that we need to divide $60,000 by 12 months, giving us 60,000 dollars / (12 months) = 5000 dollars / month. Note that again we have found a time rate, dividing the accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:48:30 `q004. Suppose that the $60,000 is made in a year by a small business. Would be more appropriate to say that the business makes $5000 per month, or that the business makes an average of $5000 per month?

......!!!!!!!!...................................

RESPONSE --> For a small business it is better to say an average of $5000 per month is earned, since business flucuates in business and not all months are equally distributed.

.................................................

......!!!!!!!!...................................

21:48:49 Small businesses do not usually make the same amount of money every month. The amount made depends on the demand for the services or commodities provided by the business, and there are often seasonal fluctuations in addition to other market fluctuations. It is almost certain that a small business making $60,000 per year will make more than $5000 in some months and less than $5000 in others. Therefore it is much more appropriate to say that the business makes and average of $5000 per month.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:50:11 `q005. If you travel 300 miles in 6 hours, at what average rate are you covering distance, and why do we say average rate instead of just plain rate?

......!!!!!!!!...................................

RESPONSE --> Average rate of travel for 300 miles in 6 hours would average about 50 miles per hour, more or less depending on rate of speed and traffic conditions.

.................................................

......!!!!!!!!...................................

21:50:36 The average rate is 50 miles per hour, or 50 miles / hour. This is obtained by dividing the accumulated quantity, the 300 miles, by the time required to accumulate it, obtaining ave rate = 300 miles / ( 6 hours) = 50 miles / hour. Note that the rate at which distance is covered is called speed. The car has an average speed of 50 miles/hour. We say 'average rate' in this case because it is almost certain that slight changes in pressure on the accelerator, traffic conditions and other factors ensure that the speed will sometimes be greater than 50 miles/hour and sometimes less than 50 miles/hour; the 50 miles/hour we obtain from the given information is clearly and overall average of the velocities.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:52:32 `q006. If you use 60 gallons of gasoline on a 1200 mile trip, then at what average rate are you using gasoline, with respect to miles traveled?

......!!!!!!!!...................................

RESPONSE --> If traveling 1200 miles and using 60 gallons of gas, one would consume about 20 miles to the gallon again depending on fluctuations in traveling conditions such as speed.

.................................................

......!!!!!!!!...................................

21:56:26 The rate of change of one quantity with respect to another is the change in the first quantity, divided by the change in the second. As in previous examples, we found the rate at which money was made with respect to time by dividing the amount of money made by the time required to make it.

By analogy, the rate at which we use fuel with respect to miles traveled is the change in the amount of fuel divided by the number of miles traveled. In this case we use 60 gallons of fuel in 1200 miles, so the average rate it 60 gal / (1200 miles) = .05 gallons / mile.

Note that this question didn't ask for miles per gallon. Miles per gallon is an appropriate and common calculation, but it measures the rate at which miles are covered with respect to the amount of fuel used. Be sure you see the difference.

Note that in this problem we again have here an example of a rate, but unlike previous instances this rate is not calculated with respect to time. This rate is calculated with respect to the amount of fuel used. We divide the accumulated quantity, in this case miles, by the amount of fuel required to cover those miles. Note that again we call the result of this problem an average rate because there are always at least subtle differences in driving conditions that require the use of more fuel on some miles than on others.

It's very important to understand the phrase 'with respect to'. Whether the calculation makes sense or not, it is defined by the order of the terms.

In this case gallons / mile tells you how many gallons you are burning, on the average, per mile. This concept is not as familiar as miles / gallon, but except for familiarity it's technically no more difficult.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> As indicated, I just read miles per gallon not the RATE at which fule with respect to miles traveled. So gallons divided by miles makes a huge difference in the equation.

.................................................

......!!!!!!!!...................................

21:57:23 `q007. The word 'average' generally connotes something like adding two quantities and dividing by 2, or adding several quantities and dividing by the number of quantities we added. Why is it that we are calculating average rates but we aren't adding anything?

......!!!!!!!!...................................

RESPONSE --> these averages are figured by dividing a product by another product.

.................................................

......!!!!!!!!...................................

21:57:50 The word 'average' in the context of the dollars / month, miles / gallon types of questions we have been answering was used because we expect that in different months different amounts were earned, or that over different parts of the trip the gas mileage might have varied, but that if we knew all the individual quantities (e.g., the dollars earned each month, the number of gallons used with each mile) and averaged them in the usual manner, we would get the .05 gallons / mile, or the $5000 / month. In a sense we have already added up all the dollars earned in each month, or the miles traveled on each gallon, and we have obtained the total $60,000 or 1200 miles. Thus when we divide by the number of months or the number of gallons, we are in fact calculating an average rate.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

22:02:05 `q008. In a study of how lifting strength is influenced by various ways of training, a study group was divided into 2 subgroups of equally matched individuals. The first group did 10 pushups per day for a year and the second group did 50 pushups per day for year. At the end of the year to lifting strength of the first group averaged 147 pounds, while that of the second group averaged 162 pounds. At what average rate did lifting strength increase per daily pushup?

......!!!!!!!!...................................

RESPONSE --> the groups combined increased 0.014 daily per pushup.

.................................................

......!!!!!!!!...................................

22:04:03 The second group had 15 pounds more lifting strength as a result of doing 40 more daily pushups than the first. The desired rate is therefore 15 pounds / 40 pushups = .375 pounds / pushup.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> to figure one should subtract 10 from 50 =40 then divide by #of pounds 15 to equal .375 pounds/pushup

.................................................

......!!!!!!!!...................................

22:07:05 `q009. In another part of the study, participants all did 30 pushups per day, but one group did pushups with a 10-pound weight on their shoulders while the other used a 30-pound weight. At the end of the study, the first group had an average lifting strength of 171 pounds, while the second had an average lifting strength of 188 pounds. At what average rate did lifting strength increase with respect to the added shoulder weight?

......!!!!!!!!...................................

RESPONSE --> 0.85 is the avg. rate increase with added shoulder weight.

.................................................

......!!!!!!!!...................................

22:07:25 The difference in lifting strength was 17 pounds, as a result of a 20 pound difference in added weight. The average rate at which strength increases with respect added weight would therefore be 17 lifting pounds / (20 added pounds) = .85 lifting pounds / added pound. The strength advantage was .85 lifting pounds per pound of added weight, on the average.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> correct

.................................................

......!!!!!!!!...................................

22:09:47 `q010. During a race, a runner passes the 100-meter mark 12 seconds after the start and the 200-meter mark 22 seconds after the start. At what average rate was the runner covering distance between those two positions?

......!!!!!!!!...................................

RESPONSE --> 10 seconds per meter

Right, except that it's 10 meters / second

.................................................

......!!!!!!!!...................................

22:10:10 The runner traveled 100 meters between the two positions, and required 10 seconds to do so. The average rate at which the runner was covering distance was therefore 100 meters / (10 seconds) = 10 meters / second. Again this is an average rate; at different positions in his stride the runner would clearly be traveling at slightly different speeds.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> corrrect

.................................................

......!!!!!!!!...................................

22:13:05 `q011. During a race, a runner passes the 100-meter mark moving at 10 meters / second, and the 200-meter mark moving at 9 meters / second. What is your best estimate of how long it takes the runner to cover the 100 meter distance?

......!!!!!!!!...................................

RESPONSE --> 10 meters

.................................................

......!!!!!!!!...................................

22:15:02 At 10 meters/sec, the runner would require 10 seconds to travel 100 meters. However the runner seems to be slowing, and will therefore require more than 10 seconds to travel the 100 meters. We don't know what the runner's average speed is, we only know that it goes from 10 m/s to 9 m/s. The simplest estimate we could make would be that the average speed is the average of 10 m/s and 9 m/s, or (10 m/s + 9 m/s ) / 2 = 9.5 m/s. Taking this approximation as the average rate, the time required to travel 100 meters will be (100 meters) / (9.5 m/s) = 10.5 sec, approx.. Note that simply averaging the 10 m/s and the 9 m/s might not be the best way to approximate the average rate--for example we if we knew enough about the situation we might expect that this runner would maintain the 10 m/s for most of the remaining 100 meters, and simply tire during the last few seconds. However we were not given this information, and we don't add extraneous assumptions without good cause. So the approximation we used here is pretty close to the best we can do with the given information.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> simply choosing the larger of the two figures is incorrect, when averaging both figures need added together then divided by 2. to get a more accurate extimate.

.................................................

......!!!!!!!!...................................

22:16:10 `q012. We just averaged two quantities, adding them in dividing by 2, to find an average rate. We didn't do that before. Why we do it now?

......!!!!!!!!...................................

RESPONSE --> There were only two figures to figure the problem and adding them together and dividing by 2 will give the best approximate average.

.................................................

......!!!!!!!!...................................

22:16:32 In previous examples the quantities weren't rates. We were given the amount of change of some accumulating quantity, and the change in time or in some other quantity on which the first was dependent (e.g., dollars and months, miles and gallons). Here we are given 2 rates, 10 m/s and 9 m/s, in a situation where we need an average rate in order to answer a question. Within this context, averaging the 2 rates was an appropriate tactic.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

ˆzw~Ӯz[HN聇ٗ Student Name: assignment #001 001. Rates |װafz獴 Student Name: assignment #001 001. Rates G{ސzJN Student Name: assignment #001 001. Rates t鳳yIf~ž Student Name: assignment #001 001. Rates

......!!!!!!!!...................................

22:44:25 `q001. It will be very important in this course for your instructor to see and understand the process of visualization and reasoning you use when you solve problems. This exercise is designed to give you a first experience with these ideas, and your instructor a first look at your work.

Answer the following questions and explain in commonsense terms why your answer makes sense.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

22:46:21 For each question draw a picture to make sense out of the situation, and include a description of the picture.

Samples

Sample question and response

Question: If a bundle of shingles covers 30 square feet, how many bundles are required to cover a 600 square foot roof?

Response: We might draw a picture of a rectangle representing the area, dividing the rectangle into a number of smaller rectangles each representing the area covered by a single bundle. This makes it clear that we are dividing the roof area into 1-bundle areas, and makes it clear why we are going to have to divide.

Reasoning this problem out in words, we can say that a single bundle would cover 30 square feet. Two bundles would cover 60 square feet. Three bundles would cover 90 square feet. We could continue in this manner until we reach 600 square feet. However, this would be cumbersome. It is more efficient to use the ideas of multiplication and division.

We imagine grouping the 600 square feet into 30 square foot patches. There will be 600 / 30 patches and each will require exactly one bundle. We therefore require 600 / 30 bundles = 20 bundles.

{}Your responses might not be as clear as the above, though they might be even more clear. I won't be looking for perfection, though I wouldn't object to it, but for a first effort at visualizing a situation and communicating a reasoning process. This is not something you are used to doing and it might take a few attempts before you can achieve good results, but you will get better every time you try.

{}You might be unsure of what to do on a specific question. In such a case specific questions and expressions of confusion are also acceptable responses. Such a response must include your attempts to come up with a picture and reason out an explanation. For example your response might be

Sample expression of confusion:

I've drawn a picture of a pile of bundles and a roof but I'm not sure how to connect the two. I tried multiplying the number of bundles by the square feet of the roof but I got 18,000, and I know it won't take 18,000 bundles to cover the roof. How do you put the area covered by a bundle together with the roof area to get the number of bundles required?

A poor response would be something like 'I don't know how to do #17'. This response reveals nothing of your attempt to understand the question and the situation. Nor does it ask a specific question.

Incidentally, you might be tempted to quote rules or formulas about rates and velocities in answering these questions. Don't. This exercise isn't about being able to memorize rules and quote them. It is about expanding your ability to visualize, reason and communicate.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

22:47:50 In your own words briefly summarize the instructions and the intent of this exercise.

......!!!!!!!!...................................

RESPONSE --> The purpose of this exercise is to give us the chance to visualize the problem set. Sorta like using manipulatives in lower grades to allow comprenhension of the material.

.................................................

......!!!!!!!!...................................

22:49:52 `q001. If you earn 50 dollars in 5 hours, at what average rate are you earning money, in dollars per hour?

......!!!!!!!!...................................

RESPONSE --> I have five ten dollar bills and it took five hands to earn that. How many ten dollar bills go with each hand?

.................................................

Sû񩻈Ѕۨ_ŵή Student Name: assignment #001 001. Areas

If your answer does not match the given solution, you need to self-critique. This is always so, but especially when your answer to the question is 'I have no idea'. You need to convey much more of your thinking on these problems and solutions than you have done here. The only information I have is that you appear not to have understood the assignment; I don't know specifically what it is that you have not understood so I have no way of helping you to understand the things you need to understand.

You should therefore always include a detailed self-critique when your solution doesn't completely agree with the given solution. Without the self-critique I can't tell what you did and did not understand about the solution and I have no way of helping you address things you might not understand.