#$&* course Mth 279 9/16 8 Qa 00Most students coming out of most calculus sequences won't do very well on these questions, and this is particularly so if it's been awhile since your last calculus-related course.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002. Sketch a graph of the function y = 3 sin(4 t + 2). Don't use a graphing calculator, use what you know about graphing. Make your best attempt, and describe both your thinking and your graph. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph of this function will be a sinusoidal wave curve that has an amplitude of 3. When you look at this function you can see that the intervals to use would be pi/4 because if you factor out a two from the inside function you can take 2pi/2 and get pi as the period. Then you can make a table with values of t and plot the points on the graph.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Describe, in terms of A, omega and theta_0, the characteristics of the graph of y = A cos(omega * t + theta_0) + k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: In this graph, A represents the altitude of the graph. The omega will contribute to the distance between the crests and troughs of the graph. And the theta will dictate the distance that the graph is translated to the left. The k will dictate the distance that the graph is translated up.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. Find the indefinite integral of each of the following: f(t) = e^(-3 t) x(t) = 2 sin( 4 pi t + pi/4) y(t) = 1 / (3 x + 2) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The indefinite integral of f(t) = e^(-3t) is (e^(-3t))/-3 + c The indefinite integral of x(t) = 2sin(4pi t+ pi/4) is (2cos(4pi t + pi/4))/(-4pi) + c The indefinite integral of y(t) = 1/(3t+2) is (ln(3t+2))/(3) +c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q005. Find an antiderivative of each of the following, subject to the given conditions: f(t) = e^(-3 t), subject to the condition that when t = 0 the value of the antiderivative is 2. x(t) = 2 sin( 4 pi t + pi/4), subject to the condition that when t = 1/8 the value of the antiderivative is 2 pi. y(t) = 1 / (3 t + 2), subject to the condition that the limiting value of the antiderivative, as t approaches infinity, is -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The antiderivative of f(t) = e^(-3t) is (e^(-3t))/-3 + c So when we plug in the values we see 2 = (e^(-3*0))/-3+c 2 = (-1/3) + c So c = 7/3 so the antiderivitive is ((e^(-3t))/-3)) + (7/3) The antideirvative of x(t) = 2sin(4pi t+ pi/4) is (2cos(4pi t + pi/4))/(-4pi) + c So when we plug in the values we see 2 pi = (2cos(4pi *(1/8) + pi/4))/(-4pi) + c 2pi = ( sqrt 2/4pi) +c c = 2pi - ( sqrt 2/4pi) so the antiderivative is (2cos(4pi t + pi/4))/(-4pi) + (2pi - ( sqrt 2/4pi) ) The antiderivative of y(t) = 1/(3t+2) is (ln(3t+2))/(3) +c So when we plug in the values we see that the as the antiderivative goes to infinity it is equal to negative on therefore c will equal 1. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: Self-critique (if necessary I don’t think I did the very last one correctly. I wasn’t sure what to do about the limit. Every time I tried to involve a limit I got that the antiderivative would be zero.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think I could have kept going with this but I wasn’t sure what form you wanted it in.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. The graph of a function g(t) contains the points (3, 4), (3.2, 4.4) and (3.4, 4.5). What is your best estimate of the value of g ' (3), where the ' represents the derivative with respect to t? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The shown by the points you know that the slope will not be constant because the rise over run two different points is not the same. However at the point 3 the derivative would because close to 2.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I wasn’t exactly sure how to get the function and then the derivative. I tried drawing a tangent line but I wasn’t sure how I would be able to find the slope of that line, I think I’m missing something. ------------------------------------------------ Self-critique rating: 1 "