If your solution to stated problem does not match the given solution, you should self-critique per instructions at

 

   http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution.  If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it.  This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

 

Precalculus II

Asst # 3

02-28-2001

......!!!!!!!!...................................

                                                  22:16:00

......!!!!!!!!...................................

 

 

 

 query  problem 5.4.72  length of ladder around corner hall widths 3 ft and 4 ft `theta relative to wall in 4' hall, ladder in contact with walls.

If the angle is `theta, as indicated, then how long is the ladder?

......!!!!!!!!...................................

                                                  22:20:54

Your solution:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence Assessment:

Given Solution: 

 ** First you need a good picture, which I hope you drew and which you should describe.

 

Using the picture, in the 4' hall you can construct a right triangle with angle `theta and a side of 4 ft, with the part of the ladder in that hall forming the hypotenuse.  Is the 4 ft opposite to the angle, adjacent to the angle or is it the hypotenuse?  Once you answer that you can find how much ladder is in the hall.

 

You can also construct a right triangle with the rest of the ladder as the hypotenuse and the angle  `theta as one of the angles.  Identifying sides and using the definitions of the trig functions you can find the length of the hypotenuse and therefore the rest of the length of the ladder.  

** The 4 ft is opposite to the angle theta between the hall and the ladder, i.e., between wall and hypotenuse.  So 4 ft / hypotenuse = sin(theta) and the length of the ladder section in this hall is hypotenuse = 4 ft / sin(theta).

 

The triangle in the 3 ft hall has the 3 ' side parallel to the 4 ' hall, so the angle between hypotenuse and the 3 ' side is theta.  Thus 3 ft / hypotenuse = cos(theta) and the length of ladder in this hass is hypotenuse = 3 ft / cos(theta).

 

So it is true that length = 4/sin(theta) + 3/cos(theta). **

.........................................

                                                  22:20:56

......!!!!!!!!...................................

 

 

Self-critique (if necessary):

 

 

 

 

 

Self-critique Rating:

 

 query  problem  5.4.78  area of isosceles triangle A = a^2 sin`theta cos`theta, a length of equal side

how can we tell that the area of the triangle is a^2 sin(`theta) cos(`theta)?

......!!!!!!!!...................................

                                                  22:41:27

Your solution:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence Assessment:

Given Solution: 

STUDENT SOLUTION: 

 

A = 1/2bh

 

Since an isosceles triangle can be separated into two right triangles .  We can use right triangle math to derive an equation for the area.  The triangles will have a hypoteuse of "a "  an  adjacent side (equal to 1/2 base) of a cos`theta and a Opposite side (equal to height) of a sin`theta.

 

1/2 base(b) =    acos`theta

 height (h) =    asin`theta

 

A = a cos`theta * a sin`theta

A = a^2 cos(`theta) sin(`theta)

 

** a * cos 'theta = 1/2 * base so

base = 2 * a * cos(`theta).

 

a * sin 'theta = height.

 

So 1/2 base * height = 1/2 (a sin 'theta)(2 * a cos 'theta) = a^2 (sin 'theta)(cos 'theta) **

.........................................

                                                  22:41:28

......!!!!!!!!...................................

 

 

Self-critique (if necessary):

 

 

 

 

 

Self-critique Rating:

 

 query  problem 5.5.42  transformations to graph 3 cos x + 3

explain how you use transformations to construct the graph.

......!!!!!!!!...................................

                                                

Your solution:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence Assessment:

Given Solution: 

 ** The graph of cos(x) is 'centered' on the x axis, has a period of 2 `pi, as you say, and an amplitude of 1.  Thus it runs from y value 1 to 0 to -1 to 0 to 1 in its first cycle, and in every subsequent cycle.

 

The graph of y = 3 cos x has the same description except that every y value is multiplied by 3, thereby 'stretching' the graph by factor 3.  Its y values run between y = 3 and y = -3.  The period is not affected by the vertical stretch and remains 2 `pi.

 

y = 3 cos x + 3 is the same except that we now add 3 to every y value.  This means that the y values will now run from -3+3 = 0 to +3+3 = 6.  The period is not affected by consistent changes in the y values and remains 2 `pi. **

 

.........................................

 

 

 

Self-critique (if necessary):

 

 

 

 

 

Self-critique Rating:

 

 query  problem 5.5.54  transformations to graph 4 tan(.5 x)

explain how you use transformations to construct the graph.

......!!!!!!!!...................................

 

Your solution:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence Assessment:

Given Solution: 

 ** The period of tan x is `pi because every time x changes by `pi you get to a point on the reference circle where the values of the tangent function start repeating.  The graph of tan x repeats between vertical asymptotes at x = -`pi/2 and +`pi/2.

 

.5 x will change by `pi if x changes by `pi / .5 = 2 `pi.  So the period of tan(.5x) is 2 `pi.  This effective 'spreads' the graph out twice as far in the horizontal direction.

 

The graph therefore passes thru the origin and has vertical asymptotes at -`pi and `pi (twice as far out in the horizontal direction as for tan x).

 

4 tan(.5x) will be just like tan(.5x) except that every point is 4 times as far from the x axis--the graph is therefore stretched vertically by factor 4.  This will, among other things, make it 4 times as steep when it passes thru the x axis.  **

.........................................

 

......!!!!!!!!...................................

 

 

Self-critique (if necessary):

 

 

 

 

 

Self-critique Rating:

 

 describe the graph by giving the locations of its vertical asymptotes

......!!!!!!!!...................................

 

Your solution:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence Assessment:

Given Solution: 

** Each period of the function happens between its vertical asymptotes.  The vertical asymptotes occur at intervals of 2 `pi, since the function has period 2 `pi.

 

The vertical asymptotes nearest the origin are at -`pi and +`pi.

 

In the positive direction the next few will be at 3 `pi, 5 `pi, 7 `pi, etc..

 

In the negative direction the next few will be at -3 `pi, -5 `pi, -7 `pi, etc..

 

Thus asymptotes occur at all positive and negative odd multiples of `pi. **

.........................................

Self-critique (if necessary):

 

 

 

 

 

Self-critique Rating: