#$&* course MTH 279 Query 29 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: 3 ********************************************* Question: Use a propagator matrix to find y(1), given y ( 0 ) = [1; 1; 0], for the system y ' = [ 1, 1, 1; 0, 2, 1; 0, 0, -1 ] y. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = [ 1, 1, 1; 0, 2, 1; 0, 0, -1 ]. We find the eigenpairs of A. det(A-λI) =0: λ=-1,1,2. For λ=-1: A-(-1)I=0. The eigenvector for this eigenvalue is v_1=[-1;-1;3]. For λ=1: A-I=0. The eigenvector for this eigenvalue is v_2=[1;0;0]. For λ=2: A-2I=0. The eigenvector for this eigenvalue is v_3=[1;1;0]. T is the ordered eigenvector matrix: T= [-1,1,1; -1,0,1; 3,0,0]. T^(-1) = [0,0,1/3; 1,-1,0; 0,1,1/3]. D is the diagonal eigenvalue matrix: D=[-1,0,0; 0,1,0; 0,0,2]. We assume our solution will come in a form of Φ=e^(tA). Therefore, Φ’=Ae^(tA) = AΦ. The similarity transform process says that A=TDT^(-1). Therefore, we have e^(tA) = T*e^(tD)*T^(-1) = Φ. e^(tA) = T*[e^(-t),0,0; 0,3e^(t),0; 0,0,e^(2t)]*T^(-1) = [e^(t), e^(2t)-e^(t), e^(2t)/3-e^(-t)/3; 0, e^(2t), e^(2t)/3-e^(-t)/3; 0, 0, e^(-t)] = Φ = y. We multiply this by a constant matrix [c_1;c_2;c_3]. We now have: y = [e^(t), e^(2t)-e^(t), e^(2t)/3-e^(-t)/3; 0, e^(2t), e^(2t)/3-e^(-t)/3; 0, 0, e^(-t)]*[c_1;c_2;c_3]. We impose the initial condition y(0) = [1;1;0]. y(0) = [1;1;0] = I*[c_1;c_2;c_3]. c_1=1, c_2=1, c_3=0. Our solution is y(t) = [e^(t), e^(2t)-e^(t), e^(2t)/3-e^(-t)/3; 0, e^(2t), e^(2t)/3-e^(-t)/3; 0, 0, e^(-t)]*[1;1;0]. Finding y(1), we get y(1) = [e^(2); e^(2); 0]. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Given the solution matrix psi(t) = [t, t^2; 1, 2 t] find the propagator matrix phi(t, s), t > 0, s > 0. Is the propagator matrix a function of t - s? Find y(3) given that y(1) = [1, -1]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Φ(t,s) = Ψ(t)*Ψ^(-1)(s) = [t,t^2; 1, 2t]*[2/s, -1; -1/s^2, 1/s] = [2t/s-t^2/s^2, -t+t^2/; 2/s-2t/s^2, -1+2t/s]. The propagator matrix is a function of t-s. y = Ψ(t)*[c_1; c_2]. y(1) = [1;-1] = Ψ(t)*[c_1; c_2]. c_1 = 3, c_2 = -2. y(3) = [3, 3^2; 1, 2(3)]*[3;-2] = [-9; -9]. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Suppose that T^-1 A T = [lambda_1, 0; 0, lambda_2]. Let p(A) be the matrix polynomial 2 A^3 - A + 3 I. Find the matrix B such that p(A) = T B T^-1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: B = [λ_1, 0; 0, λ_2] = T^(-1)AT. For any two similar matrices, A and B, the characteristic polynomials are the same. If they have the same polynomial, they have the same eigenvalues. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Let A be invertible and diagonalizable, and let D = T^-1 A T be the matrix as diagonalized by a similarity transform. Show that D is invertible. Show that A^-1 is diagonalizable by the same similarity transform that diagonalizes A (i.e., show that D^-1 = T^-1 A^-1 T). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Using the similarity transform algorithm, we know that D = T^(-1)AT. Just looking at the formula, we know that T has an inverse, and is obviously invertible by that fact. The invertibility of D is dependent on the invertibility of A. Since we know that A is invertible and diagonalizable, we can have D^(-1) = TA^(-1)T^(-1). We can show using an example: A = [1,2;2,1]. T=[1,-1; 1,1]. T^(-1)=[1/2,1/2; -1/2, ½]. A^(-1) = [-1/3, 2/3; 2/3, -1/3]. D=T^(-1)AT = [3,0; 0, -1]. We can invert this to show that it is in fact invertible. Now by our transform algorithm, D^(-1) = T^(-1)A^(-1)T = [1/3, 0; 0, -1]. D^(-1) is the diagonal of A^(-1). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Let A be a diagonalizable 2 x 2 matrix with lambda_1 = 1/4, x_1 = [2, 5] and lambda_2 = 1/2, x_2 = [1, 3]. Find cos(pi A) and sin(pi A). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T = [2,1; 5,3]. T^(-1) = [3, -1; -5, 2]. D=[1/4, 0; 0, ½]. A=TDT^(-1) = [-1, ½; -15/4, 7/4]. cos(πA) = I + (-1)^k*(πA)^(2k)/(2k)! . In our A, k is 2. cos(πA) = I + (-1)^1*(πA)^(2)/2! + (-1)^2*(πA)^4/4! ≈ [4.24, -1.41; 10.61, -3.54]. sin(πA) = A + (-1)^k/(2k+1)!*A^(2k+1). sin(πA) ≈ [-0.76, 0.59; -4.4, 2.5]. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I’m not entirely possible about the cos(πA) and sin(πA) parts. I’ve never seen this series expansion before. I believe that k = the number of eigenvalues for the matrix A?? Is that correct?? From what I read, this series expansion is supposed to be more meaningful than just doing the cos() and sin() of the individual elements. ------------------------------------------------ Self-critique rating: 3 ********************************************* Question: Let A be a diagonalizable 2 x 2 matrix with lambda_1 = 1/4, x_1 = [2, 5] and lambda_2 = 1/2, x_2 = [1, 3]. Solve the equation y '' + y ' + A y = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T = [2,1; 5,3] D=[1/4,0;0,1/2] T^(-1)=[3,-1;-5,2]. A=TDT^(-1)=[-1, ½; -15/4, 7/4]. λ^2 + λ + A = 0; λ = -1/2±[sqrt(5)/2, i/2; 2, isqrt(6)/2]. y = Ae^(λ_1t) + Be^(λ_2t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK"