open query R1

course MTH 158

02/07about 12:30 am

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

001. `* 1

*********************************************

Question: * R.1.26 \ was R.1.14 (was R.1.6) Of the numbers in the set {-sqrt(2), pi + sqrt(2), 1 / 2 + 10.3} which are counting numbers, which are rational numbers, which are irrational numbers and which are real numbers?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

None are counting numbers

Rational: 1/2+10.3

Irrational numbers: sqrt(2)}, pi+sqrt(2)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Counting numbers are the numbers 1, 2, 3, .... . None of the given numbers are counting numbers

Rational numbers are numbers which can be expressed as the ratio of two integers. 1/2+10.3 are rational numbers.

Irrational numbers are numbers which can be expressed as the ratio of two integers. {-sqrt(2)}, pi+sqrt(2) are irrational numbers.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: * R.1.44 \ 32 (was R.1.24) Write in symbols: The product of 2 and x is the product of 4 and 6

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2*x = 4*6

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** The product of 2 and x is 2 * x and the product of 4 and 6 is 4 * 6. To say that these are identical is to say that 2*x=4*6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question:

* R.1.62 \ 50 (was R.1.42) Explain how you evaluate the expression 2 - 5 * 4 - [ 6 * ( 3 - 4) ]

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First do the in the ( ) 2 - 5 * 4 - [ 6 * ( -1) ]

Then complete what is in the [ ] 2 - 5 * 4 - [ -6 ]

Then complete by mult. First 2-20- [-6]

Then change the double negative sign to positive 2-20+6

Subtract -18+6

Add = -12

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * **Starting with

2-5*4-[6*(3-4)]. First you evaluate the innermost group to get

2-5*4-[6*-1] . Then multiply inside brackets to get

2-5*4+6. Then do the multiplication to get

2-20+6. Then add and subtract in order, obtaining

-12. **

* R.1.98 \ 80 (was R.1.72) Explain how you use the distributive property to remove the parentheses from the express (x-2)(x-4).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Start by timesing the both x and -2 from (x-2) to (x-4) x(x-4) - 2(x-4)

Start with the first ( ) x^2-4x - 2x-8

Then subtract the common variables x^2-6x-8

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** COMMON ERROR: Using FOIL. FOIL is not the Distributive Law. FOIL works for binomial expressions. FOIL follows from the distributive law but is of extremely limited usefulness and the instructor does not recommend relying on FOIL.

Starting with

(x-2)(x-4) ; one application of the Distributive Property gives you

x(x-4) - 2(x-4) . Applying the property to both of the other terms we get

x^2 - 4x - (2x -8). Simplifying:

x^2 - 4x - 2x + 8 or

x^2 - 6x + 8. *

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question:

* R.1.102 \ 86 (was R.1.78) Explain why (4+3) / (2+5) is not equal to 4/2 + 3/5.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(4+3) / (2+5) must be added to make it 7/7 =1 not 4/2+3/5

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Good answer but at an even more fundamental level it comes down to order of operations:

(4+3)/(2+5) means

7/7 which is equal to

1.

By order of operations, in which multiplications and divisions precede additions and subtractions,

4/2+3/5 means

(4/2) + (3/5), which gives us

2+3/5 = 2 3/5

* Add comments on any surprises or insights you experienced as a result of this assignment.

Good.

Do remember to include confidence ratings.