Asst3

course Mth 164

1. Construct a table of the values of y = sin(x) for a complete cycle of this function, with x equal to multiples of pi/6 or pi/4, and using the table construct a graph of one cycle of y = sin(x ). 2. Given a function y = sin(theta) with theta given as a function of x, construct a table of the values of y = sin(theta) for a complete cycle of this function with theta equal to multiples of pi/6 or pi/4, then determine the x value corresponding to each value of theta. Using a table of y vs. x construct a graph of one cycle of y = sin(theta) in terms of the given function theta of x, clearly labeling the x axis for each quarter-cycle of the function.

3. Interpret the function and graph corresponding to Goal 2 in terms of angular motion on a unit circle.

Click once more on Next Question/Answer for a note on Previous Assignments.

Previous Assignments: Be sure you have completed Assignment 2 as instructed under the Assts link on the homepage and submitted the result of the Query and q_a_ from that Assignment.

*********************************************

Question: `q001. Note that this assignment has 15 activities.

Figure 93 shows the angular positions which are multiples of pi/4 superimposed on a grid indicating the scale relative to the x y coordinate system. Estimate the y coordinate of each of the points whose angular positions correspond to 0, pi/4, pi/2, 3 pi/4, pi, 5 pi/4, 3 pi/2, 7 pi/4, and 2 pi.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: It appears to be close to (.7,.7) of the y.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe angular positions of the points coinciding with the positive and negative x axes all have y coordinate 0; these angles include 0, pi and 2 pi.

At angular position pi/4 the point of circle appears to be close to (.7,.7), perhaps a little beyond at (.71,.71) or even at (.72,.72).

Any of these estimates would be reasonable.

• Note for reference that, to two decimal places the coordinates are in fact (.71,.71).

• To 3 decimal places the coordinates are (.707, .707), and

• the completely accurate coordinates are (`sqrt(2)/2, `sqrt(2) / 2).

The y coordinate of the pi/4 point is therefore .71.

The y coordinate of the 3 pi/4 point is the same, while the y coordinates of the 5 pi/4 and 7 pi/4 points are -.71.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q002. Figure 31 shows the angular positions which are multiples of pi/6 superimposed on a grid indicating the scale relative to the x y coordinate system. Estimate the y coordinate of each of the points whose angular positions correspond to 0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 4 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: pi/6 is (.9,.5) and pi/3 is (.5,.85) and 2pi/3 at (.86) while 4 pi/3 and 5 pi/3 are (-.87) 5 pi/6 at (.5) 7 pi/6 and 11 pi/6 at (-.5)

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The angular positions of the points coinciding with the positive and negative x axes all have y coordinate 0; these angles include 0, pi and 2 pi.

At angular position pi/6 the point on the circle appears to be close to (.9,.5); the x coordinate is actually a bit less than .9, perhaps .87, so perhaps the coordinates of the point are (.87, .5). Any estimate close to these would be reasonable.

• Note for reference that the estimate (.87, .50) is indeed accurate to 2 decimal places.

• The completely accurate coordinates are (`sqrt(3)/2, 1/2).

The y coordinate of the pi/6 point is therefore .5.

The coordinates of the pi/3 point are (.5, .87), just the reverse of those of the pi/6 point; so the y coordinate of the pi/3 point is approximately .87.

The 2 pi/3 point will also have y coordinate approximately .87, while the 4 pi/3 and 5 pi/3 points will have y coordinates approximately -.87. The 5 pi/6 point will have y coordinate .5, while the 7 pi/6 and 11 pi/6 points will have y coordinate -.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q003. Make a table of y coordinate vs. angular position for points which lie on the unit circle at angular positions theta which are multiples of pi/4 with 0 <= theta <= 2 pi (i.e., 0, pi/4, pi/2, 3 pi/4, pi, 5 pi/4, 3 pi/2, 7 pi/4, 2 pi). You may use 2-significant-figure approximations for this exercise.

Sketch a graph of the y coordinate vs. angular position.

Give your table and describe the graph.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

theta y coordinate

0 0.0

pi/4 .78

pi/2 1.2

3pi/4 .71

pi 0.0

5pi/4 -.71

3pi/2 -1.0

7pi/4 -.71

2pi 0.0

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe table is

theta y coordinate

0 0.0

pi/4 0.71

pi/2 1.0

3 pi/4 0.71

pi 0.0

5 pi/4 -0.71

3 pi/2 -1.0

7 pi/4 -0.71

2 pi 0.0.

We note that the slope from (0,0) to (pi/4,.71) is greater than that from (pi/4,.71) to (pi/2,1), so is apparent that between (0,0) and (pi/2,1) the graph is increasing at a decreasing rate. We also observe that the maximum point occurs at (pi/2,1) and the minimum at (3 pi/2,-1).

The graph starts at (0,0) where it has a positive slope and increases at a decrasing rate until it reaches the point (pi/2,1), at which the graph becomes for an instant horizontal and after which the graph begins decreasing at an increasing rate until it passes through the theta-axis at (pi, 0). It continues decreasing but now at a decreasing rate until reaching the point (3 pi/2,1), for the graph becomes for an instant horizontal. The graph then begins increasing at an increasing rate until it again reaches the theta-axis at (2 pi, 0).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q004. In terms of the motion of the point on the unit circle, why is it that the graph between theta = 0 and pi/2 increases? Why is that that the graph increases at a decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: it clearly increases from 0 to 1 and the motion of the arc of the circle takes us in the y direction.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

As we move along the unit circle from the theta = 0 to the theta = pi/2 position it is clear that the y coordinate increases from 0 to 1. At the beginning of this motion the arc of the circle take us mostly in the y direction, so that the y coordinate changes quickly. However by the time we get near the theta = pi/2 position at the 'top' of the circle the arc is carrying us mostly in the x direction, with very little change in y.

If we continue this reasoning we see why as we move through the second quadrant from theta = pi/2 to theta = pi the y coordinate decreases slowly at first then more and more rapidly, reflecting the way the graph decreases at an increasing rate. Then as we move through the third quadrant from theta = pi to theta = 3 pi/2 the y coordinate continues decreasing, but at a decreasing rate until we reach the minimum y = -1 at theta = 3 pi/2 before begin beginning to increase an increasing rate as we move through the fourth quadrant.

If you did not get this answer, and if you did not draw a sketch of the circle and trace the motion around the circle, then you should do so now and do your best to understand the explanation in terms of your picture. You should also document in the notes whether you have understood this explanation.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q005. The table and graph of the preceding problems describe the sine function between = 0 and theta = pi/2. The sine function can be defined as follows:

• The sine of the angle theta is the y coordinate of the point lying at angular position theta on a unit circle centered at the origin.

We write y = sin(theta) to indicate the value of this function at angular position theta.

Make note also of the definition of the cosine function:

• The cosine of the angle theta is the x coordinate of the point lying at angular position theta on a unit circle centered at the origin.

We write x = cos(theta) to indicate the value of this function at angular position theta.

We can also the line tangent function to be

• tan(theta) = y / x.

Since for the unit circle sin(theta) and cos(theta) are respectively y and x, it should be clear that tan(theta) = sin(theta) / cos(theta).

Give the following values: sin(pi/6), sin(11 pi/6), sin(3 pi/4), sin(4 pi/3), cos(pi/3), cos(7 pi/6).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: (pi/6) is 5, (11pi/6) is -5, (3pi/4) is .71, (4pi/3) is .87, (pi/3) is .5, (7pi/6) is -.87

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** `asin(pi/6) is the y coordinate on the unit circle of the point at the pi/6 position. We have seen that this coordinate is .5.

sin(11 pi/6) is the y coordinate on the unit circle of the point at the 11 pi/6 position, which lies in the fourth quadrant and in angular displacement of pi/6 below the positive x-axis. We have seen that this coordinate is -.5.

sin(3 pi/4) is the y coordinate on the unit circle of the point at the 3 pi/4 position. We have seen that this coordinate is .71.

sin(4 pi/3) is the y coordinate on the unit circle of the point at the 4 pi/3 position, which lies in the third quadrant at angle pi/3 beyond the negative x axis. We have seen that this coordinate is -.87.

cos(pi/3) is the x coordinate on the unit circle of the point at the pi/3 position, which lies in the first quadrant at angle pi/3 above the negative x axis. We have seen that this coordinate is .5.

cos(7 pi/6) is the y coordinate on the unit circle of the point at the 7 pi/6 position, which lies in the third quadrant at angle pi/6 beyond the negative x axis. We have seen that this coordinate is -.87.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q006. Suppose that the angle theta is equal to 2 x and that y = sine (theta). Given values of theta correspond to x = pi/6, pi/3, ..., pi, give the corresponding values of y = sin(theta).

Sketch a graph of y vs. x. Not y vs. theta but y vs. x.

Do you think your graph is accurate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x 2x sin(2x)

0 0 0.0

pi/6 pi/3 0.87

pi/3 2 pi/3 0.87

pi/2 pi 0

2 pi/3 4 pi/3 -0.87

5 pi/6 5 pi/3 -0.87

0 2 pi 0.0.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The angles are in increments of pi/6, so we have angles pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6 and pi.

If x = pi/6, then 2x = 2 * pi/6 = pi/3.

If x = pi/3, then 2x = 2 * pi/3 = 2 pi/3.

If x = pi/2, then 2x = 2 * pi/2 = pi.

If x = 2 pi/3, then 2x = 2 * 2 pi/3 = 4 pi/3.

If x = 5 pi/6, then 2x = 2 * 5 pi/6 = 5 pi/3.

If x = pi, then 2x = 2 * pi/6 = 2 pi.

The values of sin(2x) are therefore

sin(pi/3) = .87

sin(2 pi/3) = .87

sin(pi) = 0

sin(4 pi/3) = -.87

sin(5 pi/3) = -.87

sin(2 pi) = 0.

We can summarize this in a table as follows:

x 2x sin(2x)

0 0 0.0

pi/6 pi/3 0.87

pi/3 2 pi/3 0.87

pi/2 pi 0

2 pi/3 4 pi/3 -0.87

5 pi/6 5 pi/3 -0.87

0 2 pi 0.0.

Figures 93 and 77 depict the graphs of y = sin(theta) vs. theta and y = sin(2x) vs. x. Note also that the graph of y = sin(2x) continues through another complete cycle as x goes from 0 to 2 pi; the incremental x coordinates pi/4 and 3 pi / 4 are labeled for the first complete cycle.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q007. Now suppose that x = pi/12, 2 pi/12, 3 pi/12, 4 pi/12, etc.. Give the reduced form of each of these x values. Given x = pi/12, pi/6, pi/4, pi/3, 5 pi/6, ... what are the corresponding values of y = sin(2x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 2 pi/12 reduces to pi/6.

3 pi/12 reduces to pi/4.

4 pi/12 reduces to pi/3.

6 pi/12 reduces to pi/2.

8 pi/12 reduces to 2 pi/3

9 pi/12 reduces to 3 pi/4

10 pi/12 reduces to 5 pi/6

12 pi/12 reduces to pi

Doubling:

x 2x sin(2x)

0 0 0.0

pi / 12 pi/6 0.5

pi/6 pi/3 0.87

pi/4 pi/2 1.0

pi/3 2 pi/3 0.87

5 pi/12 5 pi/6 0.5

pi/2 pi 0.0

7 pi/12 7 pi/6 -0.5

2 pi/3 4 pi/3 -0.87

3 pi/4 3 pi/2 -1.0

5 pi/6 5 pi/3 -0.87

11 pi/12 11 pi/6 -0.5

pi/2 pi -0.0

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

pi / 12 doesn't reduce.

2 pi/12 reduces to pi/6.

3 pi/12 reduces to pi/4.

4 pi/12 reduces to pi/3.

5 pi/12 doesn't reduce.

6 pi/12 reduces to pi/2.

7 pi/12 doesn't reduce

8 pi/12 reduces to 2 pi/3

9 pi/12 reduces to 3 pi/4

10 pi/12 reduces to 5 pi/6

11 pi/12 doesn't reduce

12 pi/12 reduces to pi

Doubling these values and taking the sines we obtain the following table:

x 2x sin(2x)

0 0 0.0

pi / 12 pi/6 0.5

pi/6 pi/3 0.87

pi/4 pi/2 1.0

pi/3 2 pi/3 0.87

5 pi/12 5 pi/6 0.5

pi/2 pi 0.0

7 pi/12 7 pi/6 -0.5

2 pi/3 4 pi/3 -0.87

3 pi/4 3 pi/2 -1.0

5 pi/6 5 pi/3 -0.87

11 pi/12 11 pi/6 -0.5

pi/2 pi -0.0

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q008. Given the table of values obtained in the preceding problem, sketch a graph of y vs. x. Describe your graph. By how much does x change as the function sin(2x) goes through its complete cycle, and how does this compare with a graph of y = sin(x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The graph passes through (0,0) with a positive slope and increases at a decreasing rate until it reaches a maximum value at the x=pi/4 point (pi/4, 1).

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aYour graph should pass through the origin (0,0) with a positive slope. It will have a peak at x = pi/4, pass back through the x-axis at x = pi/2, reach a minimum at x = 3 pi/4 and return to the x-axis at x = pi.

More detail: The graph of y vs. x passes through the origin (0,0) with a positive slope and increases at a decreasing rate until it reaches a maximum value at the x = pi/4 point (pi/4,1). The graph is horizontal for an instant and then begins decreasing at an increasing rate, again reaching the x-axis at the x = pi/2 point (pi/2,0). The graph continues decreasing, but now at a decreasing rate until a reaches its minimum value at the x = 3 pi/4 point (3 pi/4,0). The graph is horizontal for an instant then begins increasing an increasing rate, finally reaching the point (pi, 0).

The graph goes through its complete cycle as x goes from 0 to pi. A graph of y = sin(x), by contrast, would go through a complete cycle as x changes from 0 to 2 pi. We see that placing the 2 in front of x has caused the graph to go through its cycle twice as fast.

Note that the values at multiples of the function at 0, pi/4, pi/2, 3 pi/4 and 2 pi are clearly seen on the graph. Note in Figure 3 how the increments of pi/12 are labeled between 0 and pi/4. You should complete the labeling of the remaining points on your sketch.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q009. Now consider the function y = sin(theta) = sin(3x). What values must x take so that theta = 3x can take the values 0, pi/6, pi/3, pi/2, ... ?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 2 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi then x takes values 0, 1/3 * pi/6, 1/3 * pi/3, 1/3 * pi/2, 1/3 * 2 pi/3, 1/3 * 5 pi/6, 1/3 * pi, 1/3 * 7 pi/6, 1/3 * 2 pi/3, 1/3 * 3 pi/2, 1/3 * 5 pi/3, 1/3 * 11 pi/6, 1/3 * 2 pi, or 0, pi/18, pi/9, pi/6, 2 pi/9, 5 pi/18, pi/3, 7 pi/18, 4 pi/9, pi/2, 5 pi/9, 11 pi/18, and 2 pi/3.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If theta = 3x then x = theta / 3. So if theta = 3x takes values 0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 2 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi then x takes values 0, 1/3 * pi/6, 1/3 * pi/3, 1/3 * pi/2, 1/3 * 2 pi/3, 1/3 * 5 pi/6, 1/3 * pi, 1/3 * 7 pi/6, 1/3 * 2 pi/3, 1/3 * 3 pi/2, 1/3 * 5 pi/3, 1/3 * 11 pi/6, 1/3 * 2 pi, or 0, pi/18, pi/9, pi/6, 2 pi/9, 5 pi/18, pi/3, 7 pi/18, 4 pi/9, pi/2, 5 pi/9, 11 pi/18, and 2 pi/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q010. Make a table consisting of 3 columns, one for x, one for theta and one for sin(theta). Fill in the column for theta with the values 0, pi/6, pi/3, ... which are multiples of pi/6, for 0 <= theta <= 2 pi. Fill in the column under sin(theta) with the corresponding values of the sine function. Now change the heading of the theta column to 'theta = sin(3x)' and the heading of the sin(theta) column to 'sin(theta) = sin(3x)'. Fill in the x column with those values of x which correspond to the second-column values of theta = 3x. The give the first, fifth and seventh rows of your table.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: x theta sin(theta)

0 0 0.0

0 pi/6 0.5

0 pi/3 0.87

0 pi/2 1.0

0 2 pi/3 0.87

0 5 pi/6 0.5

0 pi 0.0

0 7 pi/6 -0.5

0 4 pi/3 -0.87

0 3 pi/2 -1.0

0 5 pi/3 -0.87

0 11 pi/6 -0.5

0 2 pi -0.0

After inserting:

x theta = 3x sin(3x)

0 0 0.0

pi/18 pi/6 0.5

pi/9 pi/3 0.87

pi/6 pi/2 1.0

2 pi/9 2 pi/3 0.87

5 pi/18 5 pi/6 0.5

pi/3 pi 0.0

7 pi/18 7 pi/6 -0.5

4 pi/9 4 pi/3 -0.87

pi/2 3 pi/2 -1.0

5 pi/9 5 pi/3 -0.87

11 pi/18 11 pi/6 -0.5

2 pi/3 2 pi -0.0

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe table originally reads as follows:

x theta sin(theta)

0 0 0.0

0 pi/6 0.5

0 pi/3 0.87

0 pi/2 1.0

0 2 pi/3 0.87

0 5 pi/6 0.5

0 pi 0.0

0 7 pi/6 -0.5

0 4 pi/3 -0.87

0 3 pi/2 -1.0

0 5 pi/3 -0.87

0 11 pi/6 -0.5

0 2 pi -0.0

After inserting the values for x and changing column headings the table is

x theta = 3x sin(3x)

0 0 0.0

pi/18 pi/6 0.5

pi/9 pi/3 0.87

pi/6 pi/2 1.0

2 pi/9 2 pi/3 0.87

5 pi/18 5 pi/6 0.5

pi/3 pi 0.0

7 pi/18 7 pi/6 -0.5

4 pi/9 4 pi/3 -0.87

pi/2 3 pi/2 -1.0

5 pi/9 5 pi/3 -0.87

11 pi/18 11 pi/6 -0.5

2 pi/3 2 pi -0.0

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q011. Sketch the graph corresponding to your table for sin(3x) vs. x. Does the sine function go through a complete cycle? By how much does x change as the sine function goes through its complete cycle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The graph of y vs. x passes through the origin (0,0) with a positive slope and increases at a decreasing rate until it reaches a maximum value at the x = pi/6 point (pi/6,1).

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Your graph should pass through the origin (0,0) with a positive slope. It will have a peak at x = pi/6, pass back through the x-axis at x = pi/3, reach a minimum at x = pi/2 and return to the x-axis at x = 2 pi/3.

More detail: The graph of y vs. x passes through the origin (0,0) with a positive slope and increases at a decreasing rate until it reaches a maximum value at the x = pi/6 point (pi/6,1). The graph is horizontal for an instant and then begins decreasing at an increasing rate, again reaching the x-axis at the x = pi/3 point (pi/3,0). The graph continues decreasing, but now at a decreasing rate until a reaches its minimum value at the x = pi/2 point (pi/2,0). The graph is horizontal for an instant then begins increasing an increasing rate, finally reaching the point (2 pi/3, 0).

The graph goes through its complete cycle as x goes from 0 to 2 pi/3. A graph of y = sin(x), by contrast, would go through a complete cycle as x changes from 0 to 2 pi. We see that placing the 3 in front of x has caused the graph to go through its cycle three times as fast.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q012. For the function y = sin(3x), what inequality in the variable x corresponds to the inequality 0 <= theta <= 2 pi?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 0<=3x<=2pi, if multiplied by 1/3 then 1/3*0<=1/3*3x<=1/3*2pi

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If theta = 3x then the inequality

0 <= theta <= 2 pi

becomes

0 <=3x <= 2 pi.

If we multiply through by 1/3 we have

1/3 * 0 <= 1/3 * 3x <= 1/3 * 2 pi, or

0 <= x <= 2 pi/3.

In the preceding problem our graph when through a complete cycle between x = 0 and x = 2 pi/3. This precisely correspond to the inequality we just obtained.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q013. For y = sin(theta) = sin(2x - 2 pi/3), what values must x take so that theta = 2x - pi/3 will take the values 0, pi/6, pi/3, pi/2, ... ?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: If theta = 2x - pi/3 then 2 x = theta + 2 pi/3 and x = theta/2 + pi/6.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If theta = 2x - pi/3 then

2 x = theta + 2 pi/3 and

x = theta/2 + pi/6.

So if theta = 2x - pi/3 takes values

• 0, pi/6, pi/3, pi/2, 2 pi/3, 5 pi/6, pi, 7 pi/6, 2 pi/3, 3 pi/2, 5 pi/3, 11 pi/6 and 2 pi

then x = theta/2 + pi/6 takes values

• 0 + pi/6, pi/12 + pi/6, pi/3 + pi/6, pi/4 + pi/6,pi/3 + pi/6, 5 pi/12 + pi/6, pi/2 + pi/6, 7 pi/12 + pi/6,2 pi/6 + pi/6,3 pi/4 + pi/6,5 pi/6 + pi/6,11 pi/12 + pi/6,pi + pi/6,

which are added in the usual manner and reduce to

• added and reduced x values: pi/6, pi/3, 5 pi/12, pi/2, 7 pi/12, 2 pi/3, 3 pi/4, 5 pi/6, 11 pi/12, pi, 13 pi/12, 7 pi/6.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q014. Make a table consisting of 3 columns, one for x, one for theta and one for sin(theta).

Fill in the column for theta with the values 0, pi/6, pi/3, ... which are multiples of pi/6, for 0 <= theta <= 2 pi.

Fill in the column under sin(theta) with the corresponding values of the sine function.

Now change the heading of the theta column to 'theta = sin(2x - pi/3)' and the heading of the sin(theta) column to 'sin(theta) = sin(2x - pi/3)'.

Fill in the x column with those values of x which correspond to the second-column values of theta = 2x - pi/3.

Give the first, fifth and seventh rows of your table.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Our first table is the same as before. We will always start the table for the sine function in the following manner, leaving our x column blank, and listing the theta and sin(theta) columns:

x theta sin(theta)

0 0.0

pi/6 0.5

pi/3 0.87

pi/2 1.0

2 pi/3 0.87

5 pi/6 0.5

pi 0.0

7 pi/6 -0.5

4 pi/3 -0.87

3 pi/2 -1.0

5 pi/3 -0.87

11 pi/6 -0.5

2 pi -0.0

Our second table is obtained by solving theta = 2 x - pi / 3 for x, and finding x for each of our listed values of theta. We get the following:

x theta = 2x - pi/3 sin(2x-pi/3)

pi/6 0 0.0

3 pi/12 pi/6 0.5

pi/3 pi/3 0.87

5 pi/12 pi/2 1.0

pi/2 2 pi/3 0.87

7 pi/12 5 pi/6 0.5

2 pi/3 pi 0.0

3 pi/4 7 pi/6 -0.5

5 pi/6 4 pi/3 -0.87

11 pi/12 3 pi/2 -1.0

pi 5 pi/3 -0.87

13 pi/12 11 pi/6 -0.5

7 pi/6 2 pi -0.0

This table indicates that the function y = sin(2x - pi/3) goes through a complete cycle, in which y values run from 0 to 1 to 0 to -1 to 0, when the x values run from pi/3 to 5 pi/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q015. Sketch the graph corresponding to your table for sin(2x - pi/3) vs. x. Does the sine function go through a complete cycle? By how much does x change as the sine function goes through its complete cycle?

For the function y = sin(2x - pi/3), what inequality in the variable x corresponds to the inequality 0 <= theta <= 2 pi?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If theta = 2x - pi/3 then the inequality

0 <= theta <= 2 pi

becomes

0 <=2x - pi/3 <= 2 pi.

If we add pi/3 to both sides we get

pi/3 <= 2x <= 2 pi + pi/3.

If we then multiply through by 1/2 we have

1/2 * pi/3 <= 1/2 * 2x <= 1/2 * 2 pi + 1/2 * pi/3, or

pi/6 <= x <= 7 pi/6.

In the preceding problem our graph when through a complete cycle between x = pi/6 and x = 7 pi/6. This precisely corresponds to the inequality we just obtained.

A graph of y = sin(2x - pi/3) vs. x is shown in Figure 43. This graph goes through its cycle in an x 'distance' of pi, between pi/6 and 7 pi/6.

• In this it is similar to the graph of y = sin(2x), which also requires an x 'distance' of pi.

• Our graph differs from that ofy = sin(2x) in that the graph is 'shifted' pi/6 units to the right of that graph.

Good, but remember that you need to include confidence ratings.

Asst3

course Mth 164

query problem 5.4.72 length of ladder around corner hall widths 3 ft and 4 ft `theta relative to wall in 4' hall, ladder in contact with walls.If the angle is `theta, as indicated, then how long is the ladder?

......!!!!!!!!...................................

22:20:54

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The length =4/sin(theta)+3cos(theta)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** First you need a good picture, which I hope you drew and which you should describe.

Using the picture, in the 4' hall you can construct a right triangle with angle `theta and a side of 4 ft, with the part of the ladder in that hall forming the hypotenuse. Is the 4 ft opposite to the angle, adjacent to the angle or is it the hypotenuse? Once you answer that you can find how much ladder is in the hall.

You can also construct a right triangle with the rest of the ladder as the hypotenuse and the angle `theta as one of the angles. Identifying sides and using the definitions of the trig functions you can find the length of the hypotenuse and therefore the rest of the length of the ladder.

** The 4 ft is opposite to the angle theta between the hall and the ladder, i.e., between wall and hypotenuse. So 4 ft / hypotenuse = sin(theta) and the length of the ladder section in this hall is hypotenuse = 4 ft / sin(theta).

The triangle in the 3 ft hall has the 3 ' side parallel to the 4 ' hall, so the angle between hypotenuse and the 3 ' side is theta. Thus 3 ft / hypotenuse = cos(theta) and the length of ladder in this hass is hypotenuse = 3 ft / cos(theta).

So it is true that length = 4/sin(theta) + 3/cos(theta). **

.........................................

22:20:56

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

query problem 5.4.78 area of isosceles triangle A = a^2 sin`theta cos`theta, a length of equal side

how can we tell that the area of the triangle is a^2 sin(`theta) cos(`theta)?

......!!!!!!!!...................................

22:41:27

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: A= 1/2bh use the right triangle math to derive an equation for the area. 1/2b=acos'theta h=asin'theta.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT SOLUTION:

A = 1/2bh

Since an isosceles triangle can be separated into two right triangles . We can use right triangle math to derive an equation for the area. The triangles will have a hypoteuse of ""a "" an adjacent side (equal to 1/2 base) of a cos`theta and a Opposite side (equal to height) of a sin`theta.

1/2 base(b) = acos`theta

height (h) = asin`theta

A = a cos`theta * a sin`theta

A = a^2 cos(`theta) sin(`theta)

** a * cos 'theta = 1/2 * base so

base = 2 * a * cos(`theta).

a * sin 'theta = height.

So 1/2 base * height = 1/2 (a sin 'theta)(2 * a cos 'theta) = a^2 (sin 'theta)(cos 'theta) **

.........................................

22:41:28

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

query problem 5.5.42 transformations to graph 3 cos x + 3

explain how you use transformations to construct the graph.

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The graph of y = 3 cos x has the same description except that every y value is multiplied by 3, thereby 'stretching' the graph by factor 3. Its y values run between y = 3 and y = -3. The period is not affected by the vertical stretch and remains 2 `pi.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graph of cos(x) is 'centered' on the x axis, has a period of 2 `pi, as you say, and an amplitude of 1. Thus it runs from y value 1 to 0 to -1 to 0 to 1 in its first cycle, and in every subsequent cycle.

The graph of y = 3 cos x has the same description except that every y value is multiplied by 3, thereby 'stretching' the graph by factor 3. Its y values run between y = 3 and y = -3. The period is not affected by the vertical stretch and remains 2 `pi.

y = 3 cos x + 3 is the same except that we now add 3 to every y value. This means that the y values will now run from -3+3 = 0 to +3+3 = 6. The period is not affected by consistent changes in the y values and remains 2 `pi. **

.........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

query problem 5.5.54 transformations to graph 4 tan(.5 x)

explain how you use transformations to construct the graph.

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The period of tan x is pi because everytime x changes by pi you get to a point on the reference circle where the values of the tangent function start repeating.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The period of tan x is `pi because every time x changes by `pi you get to a point on the reference circle where the values of the tangent function start repeating. The graph of tan x repeats between vertical asymptotes at x = -`pi/2 and +`pi/2.

.5 x will change by `pi if x changes by `pi / .5 = 2 `pi. So the period of tan(.5x) is 2 `pi. This effective 'spreads' the graph out twice as far in the horizontal direction.

The graph therefore passes thru the origin and has vertical asymptotes at -`pi and `pi (twice as far out in the horizontal direction as for tan x).

4 tan(.5x) will be just like tan(.5x) except that every point is 4 times as far from the x axis--the graph is therefore stretched vertically by factor 4. This will, among other things, make it 4 times as steep when it passes thru the x axis. **

.........................................

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

describe the graph by giving the locations of its vertical asymptotes

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: The vertical asymptotes nearest the origin are at -`pi and +`pi.

In the positive direction the next few will be at 3 `pi, 5 `pi, 7 `pi, etc..

In the negative direction the next few will be at -3 `pi, -5 `pi, -7 `pi, etc..

Thus asymptotes occur at all positive and negative odd multiples of `pi.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Each period of the function happens between its vertical asymptotes. The vertical asymptotes occur at intervals of 2 `pi, since the function has period 2 `pi.

The vertical asymptotes nearest the origin are at -`pi and +`pi.

In the positive direction the next few will be at 3 `pi, 5 `pi, 7 `pi, etc..

In the negative direction the next few will be at -3 `pi, -5 `pi, -7 `pi, etc..

Thus asymptotes occur at all positive and negative odd multiples of `pi. **

.........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

"

GOod.

Remember to include confidence ratings.