#$&* course Mth 279 6/20 9:05 Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (6 t + 3 t^3 )dy/dt + 6 y + 9/2 t^2 y^2 + t = 0 (6 t + 3 t^3 )dy + (6 y + 9/2 t^2 y^2 + t) dt = 0 M = (6y + (9/2)t^2y^2+6) dM/dy = 6 + (9/2)t^2(2y) + 0 = 6 + 9t^2y N = 6t + 3t^3 dN/dt = 6 + 9t^2 NOT exact confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (t cos(t y) + 2 y e^y^2)dy + ( y cos(t y) + 1) dt = 0 M = ycos(ty) + 1 dM/dy = cos(ty) - tysin(ty) N = t*cos(ty) + 2y*e^y^2 dN/dt = cos(ty) - tysin(ty) YES they are exact dF/dy = N = tcos(ty)+2ye^y^2 F(t,y) = int(tcos(ty)+2ye^y^2) = -sin(ty) + e^y^2 + g(t) dF/dt = M = y*cos(ty) + 1 F(t,y) = int(y*cos(ty) + 1) = -sin(ty) + h(y) Let h(y) = e^y^2 So F(t,y) = -sin(ty) + e^y^2 + C C = -sin(pi*0) + e^pi^2 C = e^pi^2 e^pi^2 = -sin(ty) + e^y^2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N(y, t) dy + (t^2 + y^2 sin(t)) dt = 0 M = t^2 + y^2sin(t) N = ? dM/dy = 2ysin(t) N = int(2ysin(t))dy N = -2ycos(t) + C
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1. y = -t - sqrt(4 -t^2) y = -0 - sqrt(4-0^2) y = -sqrt(4) = -2 2. No real idea where to start to find a and b values if you plug in t = 0 and y = -2 you can find a value (-2 - a(0))(-1) + (a(-2) + b(0)) = 0 2 + (-2a) = 0 a = 1?
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"