#$&* course Mth 279 6/28 Query 08 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: 3.5.10. Solve dP/dt = k ( N - P) * P with P(0) = 100 000 assuming that P is the number of people, out of a population of N = 500 000, with a disease. Assume that k is not constant, as in the standard logistic model, but that k = 2 e^(-t) - 1. Plot your solution curve and estimate the maximum value of P, and also that value of t when P = 50 000. Interpret all your results in terms of the given situation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dP/dt = k(N-P)P plug in k value dP/dt = (2e^-t -1)(N-P)P separable DE dP/((N-P)P) = (2e^-t -1) dt integrate using partial fractions 1/((N-P)P) = A/(N-P) + B/P 1 = AP + BN + BP A +B = 0 BN = 1 A = -B = -1/N B=1/N Therefore integrate the following (-1/N)/(N-P) dP + (1/N)/P dp = (2e^-t -1) (1/N) ln|P/(N-P)| = -2e^-t + C Solve for P ln|P/(P-N)| = -2Ne^-t - Nt + C P/(P-N) = e^(-2Ne^-t - Nt + C) P = Ae^(-2Ne^-t - Nt)(P-N) P(t) = -NAe^-2Ne^-t - Nt)/(1-Ce^(-2Ne^-t - Nt)) find A A = 100000/(-400000e^-1000000) which is the same as saying A = P_0/((N-P_0)e^(-2N)) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!