#$&* course Mth 279 6/28 Query 10 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): checked with same problem in book and solution is correct ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.7.6. A vertical projectile has initial velocity v_0, and experiences drag force k v^2 in the direction opposite its motion. Assume that acceleration g of gravity is constant. Find the maximum height to which the projectile rises. If the initial velocity is 80 m/s and the projectile, whose mass is .12 grams, rises to a height of 40 meters (estimated quantities for a plastic BB), what is the value of k? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: mv dv/dx = -kv^2 -mg v/(kv^2/m + g) dv = -dx using u-sub integrate u = kv^2/m + g du = 2kv/m m/(2k) int (1/u)du m/(2k) ln|kv^2/m + g| = -x + C solve for v ln | kv^2/m + g| = -2kx/m + C kv^2/m + g = Ae^(-2kx/m) v=sqrt(mAe^(-2kx/m)/k - mg/k) find and solve for A v(0) = v_0 v_0 = sqrt(mAe^(-2k(0)/m)/k - mg/k) v^2_0 = mA/k - mg/k mA/k = v^2_0 + mg/k A = kv^2_0/m + mg/k *(k/m) = kv^2_0/m + g so v(x) = sqrt((m(kv^2_0/m + g)e^(-2kx/m))/k - mg/k) v(x) = sqrt((v^2_0 + g)e^(-2kx/m) - mg/k) max height v(x) = 0 0 = sqrt((v^2_0 + g)e^(-2kx/m) - mg/k) 0 = (v^2_0 + g)e^(-2kx/m) - mg/k mg/k = (v^2_0 + g)e^(-2kx/m) gm/(k(v^2_0 + g) = -2kx/m x_max = -m/(2x) * ln(mg/(k(v^2_0 + g))) find k? plug in values given 40 = -0.00012/(2k) ln((9.8*.00012)/(k(80^2+9.8)) 40 = 6*10^-6/k ln(5.45*10^6 * k) 40k = 6*10^-6 *ln(5.45*10^6 *k) Seem to be stuck here solving for k???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Got stuck solving for k ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.7.8. Mass m accelerates from velocity v_1 to velocity v_2, while constant power is exerted by the net force. At any instant power = force * velocity (physics explanation: power = dw / dt, the rate at which work is being done; w = F * dx so dw/dt = F * dx/dt = F * v). How far does the mass travel as it accelerates? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P = Fv therefore F=P/v mv dv/dx = P/v mv^2 dv/dx = P integrate mv^3/3 = Px on the left you have limits from v_1 to v_2 and on the right side of equation limits x_1 to x_2 mv^3_2/3 - mv^3_1/3 = Px_2 - Px_1 x_2 - x_1 = m(v^3_2 - v^3_1)/(3P)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.7.11. An object falls to the surface of the Earth from a great height h, and as it falls experiences a drag force proportional to the square of its velocity. Assume that the gravitational force is - G M m / r^2. What will be its impact velocity? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: mv dv/dt - kv^2 = -GMm/x^2 dv/dt -kv/m = -GM/(x^2*v) v’ - kv/m = (-GM/(x^2))v^-1 use bernoullis v’ + 2kv/m = -2GM/(x^2) use first order non homogenous) p(t) = -2k/m v(t) = Ce^(2kt/m) + e^(2kt/m)*int(e^(-2kt/m)*(-GM/x^2)dt v(t) = Ce^(2kt/m) - (2GM)/(x^2)*e^(2kt/m)*(-m/2k)(e^(-2kt/m) v(t) = Ce^(2kt/m) + (2GMm)/(kx^2) Here I am starting to get lost in the math and the use of t’s and x’s are getting confusing.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!