#$&* course Mth 279 7/15 Query 12 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I took problem to as far as I could work it then I didn’t know what to do to finish/answer the problem. ------------------------------------------------ Self-critique rating: ********************************************* Question: For each of the equations and initial conditions below, find the largest t interval in which a solution is known to exist: y '' + y ' + 3 t y = tan(t), y(pi) = 1, y ' (pi) = -1 t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0, y(1) = 0, y ' (1) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A) y’’ + y’ + 3ty = tan(t) so p(t) = 1 ; q(t) = 3t and g(t) = tan(t) p and q are continuous everywhere g discontinuous at every odd multiple of pi/2 t_0 = pi so now we need to find the interval where t_0 falls in-between. we would have intervals of (-3pi/2, -pi/2) , (-pi/2, pi/2), (pi/2, 3pi/2) and so on. But the only integral that t_0 falls between is (pi/2, 3pi/2) B) ty’’ + sin(2t)/(t^2 - 9) y’ + 2y = 0 divide by t y’’ + sin(2t)/(t(t^2 -9)) y’ + 2y/t = 0 p = sin(2t)/(t(t^2 - 9)); q = 2y/t and g = 0 to find where p and q are discontinuous you find where the denominators are = 0 for p: t(t^2 - 9) = 0 t = 0; t = 3, and t = -3 for q: t= 0 so find the largest interval when t = 1 we would have the intervals of: (-infinity, -3) (-3,0) (0,3) (3,infinity) so t=1 falls between (0,3) When if ever would an interval be <= or >= ???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether the solution of each of the following equations is increasing or decreasing, and whether each is concave up or concave down in the vicinity of the given initial point: y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 y '' - y = t^2, y(0) = 1, y ' (0) = 1 y '' - y = - 2 cos(t), y (0) = 1, y ' (0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A) y’’ + y = -2t initial point (0,1) with a slope of -1, so function is decreasing. y’’ = -1 - 2(0) = -1 with a neg second derivative the function is concave down B) y’’ -y = t^2 slope = 1 so function is increasing y’’ = y + t^2 = 1 + 0^2 = 1 so function is concave up C) y’’ - y = -2cos(t) slope =1 so increasing y’’ = 1 - 2cos(0) = 1 - 2(1) = -1 so concave down