#$&* course Mth 279 7/15 Query 15 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Are y1 = 2 e^(-2 t) cos(t) and y2 = e^(-2 t) sin(t) solutions to the equation y '' + 4 y ' + 5 y = 0? What are the initial conditions at t = 0? Is {y1, y2} a fundamental set? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A) y_1 = 2e^(-2t)*cos(t) y’_1 = -2e^(-2t)sin(t) - 4e^(-2t)cos(t) y’’_1 = -2e^(-2t)cos(t) + 4e^(-2t)sin(t) + 8e^(-2t)cos(t) - 4e^(-2t)(-sin(t)) y’’_1 = 6e^(-2t)cos(t) + 8e^(-2t)sin(t) plugging values in (6e^(-2t)cos(t) + 8e^(-2t)sin(t)) + 4(-2e^(-2t)sin(t) - 4e^(-2t)cos(t)) + 5(2e^(-2t)cos(t)) =? 0 yes does = 0 y_2 = e^(-2t)sin(t) y’_2 = -2e^(-2t)sin(t) + e^(-2t)cos(t) y’’_2 = 3e^(-2t)sin(t) - 4e^(-2t)cos(t) plugging in it equals 0 So both y_1 and y_2 are solutions of the equation B) initial conditions at t=0 y_1(0) = 2e^(-2*0)cos(0) = 2 y_1(0)=2 y’_1(0) = -2e^(-2*0)sin(0) - 4e^(0)cos(0) = -4 y’1(0) = -4 y_2 (0) = e^(0)sin(0) = 0 y_2(0) = 0 y’_2(0) = -2e^0sin(0) + e^0cos(0) = 1 y’_2(0) = 1 C) do Wronskian to see if fundamental set W(t) = |2 0; -4 1| = 2(1) - 0(-4) = 2 Yes {y_1 , y_2} are fundamental set confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: y1_bar = 2 y1 - 2 y2 and y2_bar = y1 - y2. Is {y1_bar, y2_bar} a fundamental set? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Use Wronskian but first need to find y’_1bar and y’_2bar y1_bar = 2y1 - 2y2 y’1_bar = 2y’_1 - 2y’_2 y2_bar = y_1 - y_2 y’2_bar = y’_1 - y’_2 W(t) = |2y1 - 2y2, y_1 - y_2; 2y’_1 - 2y’_2, y’_1 - y’_2| = (2y_1 - 2y_2)(y’_1 - y’_2) - (y_1 - y_2)(2y’_1 - 2y’_2) = 0 Not fundamental set confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: Note that y_1_bar = 2 * y_2_bar. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Is {e^t, 2 e^(-t), sinh (t) } a fundamental set on the interval (-infinity, infinity)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: sinh(t) = (e^t - e^-t)/2 W(t) = |y_1, y_2, y_3; y’1, y’2, y’3; y’’1, y’’2, y’’3| Not sure what W(t) equals in a 3x3 matrix in general form