Assignment 19

#$&*

course Mth 279

7/16

Query 17 Differential Equations*********************************************

Question: Solve the equation

25 y '' + 20 y ' + 4 y = 0, y(5) = 4 e^-2, y ' (5) = -3/5 e^-2

with y(5) = 4 e^-2 and y ' (5) = -3/5 e^-2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=Ae^(rt)

y’=rAe^(rt)

y’’=r^2Ae^(rt)

25 y '' + 20 y ' + 4 y = 0

25r^2 + 20r + 4 = 0

(5r+2)(5r+2) = 0

r = -2/5

y_1 = Ae^(-2/5 t)

trick y_2 = Bte^(-2/5 t)

gen soln:

y(t) = Ae^(-2/5 t) + Bte^(-2/5 t)

y’(t) = -2/5Ae^(-2/5 t) + Be^(-2/5 t) - 2/5Bte^(-2/5 t)

y(5) = Ae^(-2/5 * 5) + B(5)e^(-2/5*5)

4e^-2 = Ae^-2 + 5B^-2

4 = A + 5B

y’(5) = -2/5Ae^(-2/5 *5) + Be^(-2/5 *5) - 2/5B(5)e^(-2/5 *5)

-3/5e^(-2) = -2/5Ae^-2 + Be^-2 -2Be^-2

-3/5 = -2/5A - B

solve systems of equations

multiply second equation by 5 and add the two equations

1 = -1A

A = -1

so B will be 4 = -1 + 5B

B =1

y(t) = -e^(-2/5 * t) + te^(-2/5 * t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Solve the equation

3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3r^2 + 2sqrt(3)r + 1 = 0

solving for r using quadratic formula

r = -2sqrt(3) +- sqrt((2sqrt(3))^2 - 4(3))/2(3)

r = -2sqrt(3) +- sqrt(12-12)/6 = -2sqrt(3)/6 = -0.577

using trick to get y_2

y_2 = Bte^-0.577t

y(t) = Ae^(-0.577t) + Bte^(-0.577t)

y(0) = Ae^0 + B(0)e^0 = 2sqrt(3)

A = 2sqrt(3)

y’ = -0.577Ae^(-.577t) + Be^(-.577t) -.577Bte^(-.577t)

y’(0) = -.577A + B 0 .577B(0) = 3

3 = -.577(2sqrt(3)) + B

3 = -2 + B

B = 5

y(t) = 2sqrt(3)e^(-.577t) + 5te^(-.577t)

@&

Good, but you introduce errors when you approximate sqrt(3) / 3 as .577. When in doubt, use exact values. Your solution would be more correct expressed as

y(t) = 2 sqrt(3) e^(-sqrt(3) / 3 * t) + 5 t e^(-sqrt(3) / 3 * t).

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Solve the equation

y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0,

which has known solution y_1(t) = sin(t)

You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

reduction of order

assume y_2 = x_1*u(t)

y_2 = sin(t)u(t)

y’_2 = sin(t)u’ + ucos(t)

y’’_2 = sin(t)u’’ + 2cos(t) u’ -sin(t)u

sub into equation

0 = (sin(t)u’’ + 2cos(t) u’ -sin(t)u) - 2cot(t)(sin(t)u’ + ucos(t)) + (1+2cot^2(t))(sin(t)u)

simplifying

0 = sin(t)u’’

Let v = u’ and v’ = u’’

0 = sin(t)v’

v’ = 0

???if v’ = 0 and v’=u’’ then u’’ would = 0???

I don’t think thats right. Not sure what to do next???

@&

Good. The rest falls into place as follows:

y_2 ' = u ' * y_1 + u * y_1 ' = u ' sin(t) + u cos(t)

and

y_2 '' = u'' * y_1 + 2 u ' * y_1 ' + u y_1 ''

= u '' * sin(t) + 2 u ' * cos(t) - u * sin(t).

It's a little easier to keep track of things by writing the equation in terms of u, y_1 and their derivatives. Doing so your equation

0 = (sin(t)u’’ + 2cos(t) u’ -sin(t)u) - 2cot(t)(sin(t)u’ + ucos(t)) + (1+2cot^2(t))(sin(t)u)

can be written

u'' * y_1 + 2 u ' * y_1 ' + u y_1 '' - 2 cot(t) (u ' * y_1 + u * y_1 ') + (1 + 2 cot^2(t)) * u y_1 = 0

which can be rearranged to yield

[ u y_1 '' - 2 cot(t) * u y_1 ' + (1 + 2 cot^2(t)) * u y_1 ] + u '' y_1 + u ' ( 2 y_1 - 2 cot(t) y_1) = 0.

The terms in brackets can be expressed as u ( y_1 '' - 2 cot(t) * y_1 ' +(1 + 2 cot(t)^2) y_1); since y_1 is a solution to our original equation these terms therefore add up to zero.

This leaves us with

u '' + 2 u ' y_1 (1 - cot(t)) = 0.

We can now substitute sin(t) for y_1 to get

u '' + 2 u ' sin(t) ( 1 - cot(t)) = 0.

This is a first-order linear equation in u '. Letting v = u ' to make this clear you get an equation you can solve for v.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

________________________________________

#$&*

07-17-2014

&#Good responses. See my notes and let me know if you have questions. &#