#$&* course Mth 279 7/22 Query 19 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Will there be a table given on the test for y_p or is that table something to be memorized???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = cos(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_c? r^2 + r = 0 r(r+1) = 0 r = 0 r = -1 y_c = C_1 e^(0t) + C_2e^-1t y_p? g(t) = cos(t) y_p = t^0[Asin(t) + Bcos(t)] y_p = Asin(t) + Bcos(t) y’_p = Acos(t) + -Bsin(t) y’’_p = -Asin(t) - Bcos(t) plugging in -Asin(t) - Bcos(t) + Asin(t) + Bcos(t) = cos(t) A - B = 1 -A - B = 0 so A = - B -B-B = 1 -2B = 1 B = -1/2 so A = 1/2 y(t) = C_1 e^(0t) + C_2e^-1t+ 1/2 sin(t) + -1/2 cos(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' - 2 y ' + 3 y = 2 e^-t cos(t) + t^2 + t e^(3 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_c? r^2 - 2r - 3 = 0 (r-3)(r+1) = 0 r = 3 r =-1 y_c = C_1e^(3t) + C_2e^(-1t) y_p? g(t) = 2e^(-t)cos(t) + t^2 + t^e^(3t) take each part separately 2e^(-t)cos(t) -> y_p = Ae^-tcos(t) + Be^-tsin(t) t^2 -> y_p = Ct^2 + Dt + E te^(3t) -> (Ft^3 + Gt^2 + Ht + I)e^(3t) y(t) = C_1e^(3t) + C_2e^(-1t) + Ae^-tcos(t) + Be^-tsin(t) + Ct^2 + Dt + E + (Ft^3 + Gt^2 + Ht + I)e^(3t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' + 4 y = 2 sin(t) + cosh(t) + cosh^2(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_c? r^2 + 4 = 0 r^2 = -4 r = +- 2i y_c = C_1sin(2t) + C_2cos(2t) y_p? g(t) = 2sin(t) + cosh(t) + cosh^2(t) 2sin(t) -> Asin(t) + Bcos(t) cosh(t) = e^t/2 + e^-t/2 -> Ce^t + De^-t cosh^2(t) -> (e^t/2 + e^-t/2)^2 = e^2t/2 + e^-2t/2 -> Ee^(2t) + Fe^(-2t) y_p = Asin(t) + Bcos(t) + Ce^t + De^-t + Ee^(2t) + Fe^(-2t) y(t) = C_1sin(2t) + C_2cos(2t) + Asin(t) + Bcos(t) + Ce^t + De^-t + Ee^(2t) + Fe^(-2t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: The equation y '' + alpha y ' + beta y = t + sin(t) has complementary solution y_C = c_1 cos(t) + c_2 sin(t) (i.e., this is the solution to the homogeneous equation). Find alpha and beta, and solve the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1) find a and b? r^2 + ar + b = 0 a = 0 b/c y_c is in the format of having r be imaginary that way we are left with r^2 + b = 0 r^2 = -b r = +- sqrt(b)i There b= 1 b/c there isn’t a number in front of the t 2) Solve t -> y_p = At + B sin(t) -> y_p = t(Csin(t) + Dcos(t)) y_p = At + B + Ctsin(t) + Dtcos(t) y’_p = A + Ctcos(t) + Csin(t) + Dt(-sin(t)) + Dcos(t) y’’ = -Ctsin(t) + Ccos(t) + Ccos(t) - Dtcos(t) - Dsin(t) + D(-sin(t)) plugging in -Ctsin(t) + 2Ccos(t) - Dtcos(t) - 2Dsin(t) + At + B + Ctsin(t) + Dtcos(t) = t + sin(t) 2Ccos(t) - 2Dsin(t) + At + B = t + sin(t) 2C = 0 -> C = 0 -2D = 1 -> D= -1/2 1A = 1 -> A = 1 B = 0 y(t) = C_1cos(t) + C_2sin(t) + t + -1/2t cos(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Consider the equation y '' - y = e^(`i * 2 t), where `i = sqrt(-1). Using trial solution y_P = A e^(i * 2 t) find the value of A, which is in general a complex number (though in some cases the real or imaginary part of A might be zero) Show that the real and imaginary parts of the resulting function y_P are, respectively, solutions to the real and imaginary parts of the original equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A) y_p = Ae^(2ti) ; y’’ - y = e^(i(2t)) y’_p = 2iAe^(2it) y’’p = -4Ae^(2it) plugging in -4Ae^(2it) + Ae^(2ti) = e^(2it)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" 07-23-2014