#$&*
course Mth 279
8/5
Query 24 Differential Equations*********************************************
Question: Verify Abel's Theorem in the interval (-infinity, infinity) for
y ' = [ 6, 5; -7, -6] * y
whose solutions are
y_1 = [ 5 e^-t; -7 e^-t ]
y_2 = [ e^t; - e^t ]
with t_0 = -1
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
1) find W(t)?
W(t) = |5e^-t, e^t; -7e^-t, -e^t| = -5+7 = 2
2) find tr[P]?
tr[P]= 6+(-6) = 0
3) Verify Abel’s Theorem
use
W(t) = W(t_0)e^(int(tr[P]))
=2e^(int(0))
=2e^0
W(t)=2
which is exactly the same as what we got in step 1 so Abel’s Theorem verified
confidence rating #$&*:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1
.............................................
Given Solution:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
*********************************************
Question: y ' = A y, with solutions
y_1 = [5; 1]
y_2 = [2 e^(3 t), e^(3 t) ]
Verify that this constitutes a fundamental set.
Find Tr(A).
Show that
psi(t) = [y_1, y_2]
satisfies
psi ' = A * psi
Find A by finding psi ' * psi^-1
Is the result consistent with your result for the trace of A?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
1) W(t) = [5, 2e^(3t); 1, e^(3t)] = 5e^(3t) - 2e^(3t) = 3e^(3t), yes constitutes fund set
2) Tr[A] How do you find Tr[A} with only y_1 and y_2????
@&
W ' (t) = tr(A) * W(t).
You have W and you can easily get W ', then solve the matrix equation for A. You are guaranteed a solution because the determinant of W is nonzero, hence W is invertible.
*@
3) psi(t) = [5, 2e^(3t); 1, e^(3t)]
psi’ = [0, 6e^(3t); 0, 3e^(3t)]
4) psi^-1 = 1/(ad-bc) [d, -b; -c, a] = 1/(5e^(3t)-2e^(3t))[e^(3t), -2e^(3t); -1, 5]
= [1/3, -2/3; -1/3e^(3t), 5/3e^(3t)]
A = psi’ * psi^(-1) = [0, 6e^(3t); 0, 3e^(3t)]*[1/3, -2/3; -1/3e^(3t), 5/3e^(3t)]
A = [-2, 10; -1,5]
5) tr[A] = -2 + 5 = 3
Now sure what I am comparing too to see if it is consistent or not???
@&
Had you found the trace of A previously, you would be able to compare that result to this one.
*@
confidence rating #$&*:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
0
.............................................
Given Solution:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
"
Your work looks good. See my notes. Let me know if you have any questions.