#$&* course Mth 279 8/5 Query 25 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Determine whether there is a matrix P(t) such that y_1 = [ t^2, 0 ] y_2 = [ 2t, 1 ] is a fundamental set of solutions to the equation y ' = P(t) y. If so, find such a matrix P(t). Hint: The matrix psi(t) = [y_1, y_2 ] = [ t^2, 2 t; 0, 1 ] would need to satisfy psi ' (t) = P(t) psi(t). In standard notation we could write this as follows: satisfies YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: psi(t) = [t^2, 2t; 0,1] W(t) = det(psi) = t^2(1)-2t(0) = t^2 yes fundamental set of solutions psi’(t) = [2t, 2; 0,0] psi^-1 = 1/(t^2-0) * [1, -2t; 0,t^2] = [1/t^2, -2/t; 0,1] P(t) = [2t, 2; 0,0] * [1/t^2, -2/t; 0,1] P(t) = [2/t, -4; 0,0]
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If the matrix psi(t) = [y_1, y_2] = [e^t, e^(-t); e^t, - e^(-t)]: What are the vector functions y_1 and y_2? Write out the system of two differential equations represented by the equation y ' = P(t) y with P(t) = [0, 1; 1, 0]. Show that y_1 and y_2 are both solutions of the equation y ' = P(t) y with P(t) = [0, 1; 1, 0]. Show that { y_1 , y_2} is a fundamental set for this equation. Show that the matrix psi(t) is a solution of the matrix equation psi ' = P(t) psi. Show that the matrix psi(t) is a fundamental matrix for the linear system of equations. Let psi_hat(t) = [ 2 e^t - e^(-t), e^t + 3 e^(-t); 2 e^t + e^(-t), e^t - 3e^(-t) ]. Find a constant matrix C such that psi_hat(t) = psi(t) * C. Based on your matrix C, is psi_hat(t) a solution matrix for the system? Based on your matrix C, is psi_hat(t) a fundamental matrix for the system? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a) y_1 = [e^t;e^t] y_2= [e^-t; -e^-t] b) y’ = P(t)y P(t) = [0,1; 1,0] y’_1 = [0,1; 1,0][e^t;e^t] = [ -e^t; e^t] y’_2 = [0,1; 1,0][e^-t; -e^-t] = [-e^-t; -e^-t] I have no idea how to answer and solve the rest of the questions??? I feel that this last chapter and assignments are all over the place. I am just not comprehending what I need to do and how to do each of these questions???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Given the system y ' = [ 1, 1; 0, -2 ] y verify that psi(t) = [ e^t, e^(-2 t); 0, e^(-2 t) ] is a fundamental matrix for the system. Find a matrix C such that psi_hat(t) = psi(t) * C is a solution matrix satisfying initial condition psi_hat(0) = I, where I is the identity matrix. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1)W(t) = [e^t, e^(-2t); 0, e^(-2t)] = e^-t yes fundamental set 2) How do you to let t=0???Or why do you let t=0?? psi(0) = [e^0, e^-2(0); 0, e^(-2*0)] = [1, 1; 0, 1] psi_hat(0)= I = psi(t)*C [1,0;0,1] = [1,1;0,1]C psi_hat * psi^-1 = C psi^-1(t) = [1, -1; 0,1] C = [1,-1; 0,1]
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!