Assignment 28

#$&*

course Mth 279

8/5

Query 26 Differential Equations*********************************************

Question: Find the solutions to y ' = A y when

A = [ 5, 3; -4, -3 ]

and

y(1) = [2; 0].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

lamda= l

det(A - lamdaI) = 0

det([5,3;-4,-3] - lamda[1,0;0,1])

det[5-l, 3; -4, -3-l] = (5-l)(-3-l)-(3*-4)

l^2 -2l -3

(l-3)(l+1)

l=3 l=-1

l_1 = 3

plug in l into det()

[2,3;-4,-6]

[2,3;-4,-6][k_1; k_2] = 0

2k_1 + 3k_2 = 0

k_1 = [-3,2]

l_2 = -1

[6,3;-4,-2][k1;k2] = 0

6k_1 + 3k_2 = 0

3k_2= -6K_1

k_2 = -2k_1

let k_1 = 1

k_2 = [1;-2]

gen soln: y(t)=C1e^(l_1t)K_1 + C2e^(l_2t)K_2

y(t) = C_1[-3;2]e^(3t) + C_2[1;-2]e^-t

C_1[-3e^(3*1); 2e^(3*1)] + C_2[e^-1; -2e^-1] = [2;0]

-3e^3C_1 + e^-2C_2 = 2

2e^3C_1 + (-2e^-1)C_2 = 0

2e^3C_1 = 4

C_1 = 4/(2e^3) = 2e^-3

2e^3(2e^-3) - 2e^-1C2 = 0

4-2e^-2C_2 = 0

C_2 = 2e

y(t) = 2e^(-3)*[-3;2]e^(3t) + 2e*[1;-2]e^-t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Find the solutions to y ' = A y when

A = [ 4,2,0; 0,1,3; 0,0, -2 ]

and

y(0) = [-1;0;3].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

det(A-lI) = 0

det( 4-l, 2, 0; 0, 1-l, 3; 0, 0, -2-l) = (4-l)((1-l)(-2-l)-(3*0)) - 2((0*(-2-l))-3*0)) + 0((0*0)-(1-l)(0))

0=(4-l)(1-l)(-2-l)

l_1=4 l_2=1 l_3=-2

l_1=4

[4-l, 2, 0; 0, 1-l, 3; 0, 0, -2-l][k1;k2;k3]=0

[0,2,0; 0, -3,3; 0,0,6][k1; k2; k3]=0

Not sure how to get this into rref without doing it on a calculator

@&

If you multiply your matrix equation out you get

2 k2 = 0

-3 k2 + 3 k3 = 0

6 k3 = 0

The first equation dictates that k2 = 0.

Substituting this into the second you get an equation that dictates k3 = 0.

There is no restriction on k1. So you're free to choose any value other than zero. The simplest value you can choose is 1.

So for lambda = 4, your solution vector is [1;0;0].

*@

l_2 = 1

[3,2,0; 0,0,3; 0,0,-3][k1;k2;k3] = 0

3k1+ 2k_2 = 0

3k_3 = 0

k_3 = 0

k_1 = -2/3 k_2

let k_2 = 3

k_2 = [-2;3;0]

l_3 = -2

[6,2,0;0,3,3; 0,0,0][k1;k2;k3]=0

6k_1 + 2k_2 = 0 -> k_1 = -1/3k_2 let k_2=3

3k_2 + 3k_3 = 0 -> k_3= -k_2

k_3 = [-1;3;-3]

gen soln:

y(t) = Ce^(l_1t)k_1 + C_2e^(l_2t)k_2 + C_3e^(l_3t)k_3

my only problem with this question is how to k_1???

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Three tanks, each full of a solution and all of equal volume V, are each connected to each of the others by two pipes. Each tank also has a third pipe through which pure water flows into it, and a fourth through which water exits.

The flow rate r through every pipe is the same.

Write the system of equations that relates the quantities Q_1, Q_2 and Q_3 representing the amount of solute in each tank as a function of time.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Q’_1(t) = (rQ_3/V + rQ_2/V) - (rQ_1/V + rQ_1/V + rQ_1/V)

@&

Tank 1 has three pipes leading out of it, so your equation for Q_1 ' would include the term -3 Q_1 r / V:

Q_1' = -3(r/V)Q_1 + (r/V)Q_2 + (r/V)Q_3

Similar modifications would correct the two remaining equations.

*@

Q’_2(t) = (rQ_1/V + rQ_3/V) - (rQ_2/V + rQ_2/V + rQ_2/V)

Q’_3(t) = (rQ_1/V + rQ_2/V) - (rQ_3/V + rQ_3/V + rQ_3/V)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good work. See my notes and let me know if you have questions. &#