#$&* course Mth 279 8/5 Query 27 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Suppose that i + 1 is an eigenvalue of a matrix A and [-1 + i, i ] is a corresponding eigenvector. Find a fundamental set of real solutions to the equation y ' = A y. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = e^(lt)k y(t) = e^((i+1)t)[-1+i;i] =e^(it)e^t[-1+i;i] By Euler’s formula y(t) becomes y(t) = e^t(cos(t)+ isin(t))[-1+i;i] = [-cos(t) - isin(t) + icos(t) -sin(t); icos(t)-sin(t)] separating real and imaginary solution y(t) =e^t[-cos(t)-sin(t);-sin(t)]+e^t[-sin(t)+cos(t);cos(t)]i y_1(t) = e^t [-cos(t)-sin(t);-sin(t)] y_2(t) = e^t [-sin(t)+cos(t);cos(t)] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation y ' = [0, -9; 1, 0] y with initial condition y(0) = [6, 2]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1) det(A-lI)= 0 det(-l, -9; 1, -l] = 0 l^2+ 9= 0 l= +-3i 2)l_1 = 3i [-3i,-9;1,-3i][k1;k2] = 0 rref [-3i, -9; 0,0] [k1;k2]=0 -3ik_1 -9k_2 = 0 k_1 = -3/i k_2 let k_2 = i k_1 = [-3;i] 3) l_2 = -3i [3i, -9; 1, 3i][k1;k2] = 0 rref [3i, -9;0,0][k1;k2]=0 3ik_1 - 9k_2 = 0 k_1 =3/i k_2 let k_2 = i k_2 = [3;i] 4) y(t) = e^(3it)[3;i] use Eulers y(t) = (cos(3t) + isin(3t))[3;i] y(t) = [3cos(3t);-sin(3t)] + [3sin(3t); cos(3t)]i y_1 = [3cos(3t);-sin(3t)] y_2 = [3sin(3t); cos(3t)] y(t) = C_1y_1 + C_2y_2 y(0) = [6;2] C_1[3cos(0);-sin(0)] + C_2[3sin(0);cos(0)] = [6;2] 3C_1=6 C_1 = 2 C_2 = 2 y(t) = 2[3cos(3t);-sin(3t)] + 2[3sin(3t);cos(3t)] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find all values of mu such that any fundamental set [ y_1, y_2 ] of the system y ' = [1, 3; mu, -2] y has the property that the limit of the expression (y_1(t))^2 + (y_2(t))^2, as t -> infinity, is zero. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: det([1,3;u, -2] - l[1,0;0,1]) det(1-l, 3; u, -2-l) = l^2+l -2-3u use quadratic formula to find l l = -1+-sqrt(9+12u)/2 eigenvalues will be real when 9+12u >0 u>-3/4 eigenvalues will be complex when 9+12u <0 u <-3/4 Unsure what I need to do once eigenvalues are found to answer question about (y_1(t))^2 + (y_2(t))^2, as t -> infinity, is zero.???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: A particle moves in an unspecified force field in such a way that its position vector r(t) = x(t) i + y(t) j and the corresponding velocity vector v(t) = r ' (t) satisfy the equation v ' = 2 k X v Write this condition as a system v ' = A v, with v = [v_x; v_y]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: No idea how to go about this problem??? confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!